
1

Logic Synthesis and
Verification

Jie-Hong Roland Jiang
江介宏

Department of Electrical Engineering
National Taiwan University

Fall 2011

2

Timing Analysis &
Optimization

Reading:
Logic Synthesis in a Nutshell

Sections 5 & 6

part of the following slides are by
courtesy of Andreas Kuehlmann

3

Delay Models
 Model 1

Ak = arrival time = max{A1,A2,A3} + Dk, where Dk is the delay at
node k, parameterized according to function fk and fanout node k

 Model 2

Can also have different times for rise time and fall time

Dk

A1
A2

A3

Ak

A1
A2

A3

Ak 0

A1 A2 A3

Ak

Dk1 Dk2
Dk3


Ak = max{A1+Dk1,

A2+Dk2,A3+Dk3}

4

Gate Delay
 The delay of a gate

depends on its circuit
context, and in particular:
1. Output Load

 Capacitive loading the
charges that a gate must
move to swing the output
voltage

 Due to interconnect and
logic fanout

2. Input Slew
 Slew = transition time
 Slower transistor

switching → longer delay,
longer output slew

e.g. output 1→0

1

0

Vin

Tslew

= ReffCload

CloadCload
Reff

An inverter

5

Rising and Falling Edges
 Driving strengths of pull-up and pull-down

networks may not be equivalent
 Rising and falling outputs may have

different delays

 Idea: maintain the latest/earliest arrival time of rising and falling
transitions independently
 Unateness of each input/output pair is encoded in the library

 Positively unate inputs: only trigger output transitions in the same direction
(e.g. an AND gate)

 Negatively unate inputs: only trigger output transitions in the opposite
direction (e.g. a NOR gate)

 A transition on a binate input could trigger either direction on an output
(e.g. an XOR gate)

 Only considers local functionality, but allows a less conservative
analysis

Cload Cload
Rdown

Rup

6

Timing Library
 Timing library contains all relevant

information about each standard cell
 E.g., pin direction, clock, pin

capacitance, etc.

 Delay (fastest, slowest, and often
typical) and output slew are encoded
for each input-to-output path and
each pair of transition directions

 Values typically represented as 2
dimensional look-up tables (of output
load and input slew)
 Interpolation is used Output load (nF)

In
pu

t s
le

w
 (n

s)

10.34.93.72.82.0

8.14.03.42.61.0

7.23.92.92.40.5

6.13.42.62.10.1

10.04.02.01.0

“delay_table_1”

Path(
inputPorts(A),
outputPorts(Z),
inputTransition(01),
outputTransition(10),
“delay_table_1”,
“output_slew_table_1”

);

A

B

Z

01

10

7

Sequential Circuit
 Arrival times known at l1, l2, and l5 (PIs and latch outputs)
 Required times known at l3, l4, and l5 (Pos and latch inputs)
 Delay analysis gives arrival and required times (hence

slacks) for C1, C2, C3, C4

C3

C1
C2

C4

l1

l2 l3

l4

l5

8

Arrival Time Calculation
// level of PI nodes initialized to 0,
// the others are set to -1.
// Invoke LEVEL from PO
Algorithm LEVEL(k) { // levelize nodes

if(k.level != -1)
return(k.level)

else
k.level = 1+max{LEVEL(ki)|ki  fanin(k)}

return(k.level)
}

// Compute arrival times:
// Given arrival times on PI’s
Algorithm ARRIVAL() {

for L = 1 to MAXLEVEL
for {k|k.level = L}
Ak = MAX{Aki} + Dk}

9

Required Time Calculation
 Required time:

 Given required times on primary outputs
 Traverse in reverse topological order (i.e.

from POs to PIs)
 If (ki , k) is an edge between ki and k, the

required time of this edge is Rki,k
= Rk - Dk

 The required time of output of node k is Rk =
min { Rk,kj

| kj  fanout(k) }

// Compute required times:
// Given required times on PO’s
Algorithm REQUIRED() {

for L = MAXLEVEL-1 to 0
for {k|k.level = L}

Rk = MIN{Rk,ki}}

k

ki2

j

Rki2

Rk Rj

ki1

10

Slack
 Slack:

 Slack at the output of node k is Sk = Rk-Ak
Since Rki,k = Rk – Dk
Ski,k = Rki,k – Aki
Ski,k + Aki = Rk - Dk = Sk + Ak – Dk
Since Ak = max {Akj } + Dk
Ski,k = Sk + max {Akj } - Aki kj , ki  fanin(k)
Ski = min{Ski,j} j  fanout(ki)

 Note:
 Each edge of a circuit graph has a slack

and required time
 Negative slack is bad

k

ki2

j

Ski2

Sk Sj

ki1

11

Static Timing Analysis
 A static critical path of a Boolean network is a

path P = {n1, n2,…, np }, where Snk
, nk+1

< 0

 Note:
If a node n is on a static critical path, then at least one of

the fanin edges of n is critical. Hence, all critical paths
reach from an input to an output.

There may be several critical paths

 Timing optimization is a min-max problem:
minimize max{-Si , 0}

12

Static Timing Analysis
 Example

2 1

2 2 1

21

R2=5R1=5

A8=0 A9=0
98

0

0
1

0-1

-1
-1

-1
10

-1

-1

5

76

3

1 2

4

1

4

2

34

56

node ID

arrival time
slack

A10=2
10

1

A1 = 6 R1 = 5
A2 = 5 R2 = 5

S1= -1 R3 = 3
S2= 0 R7 = 1
S3,1= -1 R9 = -1
S4,1 = -1
S4,2 = 0
S5,2 = 1
S6,3 = 0
S7,3 = -1
S7,4 = -1
S7,5 = 1
S8,6 = 0
S9,7 = -1

critical path edges

Ski,k = Sk + max{Akj } - Aki , kj,ki  fanin(k)
Sk = min{Sk,kj }, kj  fanout(k)

13

Static Timing Analysis
 Problems

 We want to determine the true critical paths of a circuit
in order to:
determine the minimum cycle time that a circuit will

function correctly
 identify critical paths for performance optimization - don’t

want to try to optimize wrong (non-critical) paths
 Implications:

Don’t want false paths (produced by static delay analysis)
Delay model is a worst case model

 Need to ensure correctness for case where ith gate delay 
Di

Max

14

Functional Timing Analysis

Functional timing analysis estimates when
the output of a given circuit gets stable

clock

CombinationalCombinational
blockblock

00

00

T0

15

Functional Timing Analysis

Motivation
 Timing verification

Verifies whether a design meets a given timing
constraint
 E.g., cycle-time constraint

 Timing optimization
Needs to identify critical portion of a design for

further optimization
Critical path identification

 In both applications, accurate analysis is
desirable

16

Gate-Level Timing Analysis
 Naïve approach - Simulate all input vectors with

SPICE
Accurate, but too expensive

 Gate-level timing analysis (our focus)
 Less accurate than SPICE due to the level of

abstraction, but much more efficient
Scenario:

Gate/wire delays are pre-characterized (accuracy loss)
Perform timing analysis of a gate-level circuit

assuming the gate/wire delays

17

Gate-Level Timing Analysis
 A naive approach is

topological analysis
 Easy longest-path problem
 Linear in the size of a

network
 Not all paths can propagate

signal events
 False paths
 If all longest paths are false,

topological analysis gives
delay over-estimation

 Functional timing analysis =
false-path-aware timing
analysis
 Compute false-path-aware

arrival time

arr(x1)=0 arr(x2)=0

False path aware
arr(z)?

z

x1 x2

1

1

18

Gate-Level Timing Analysis
 Example

 2-bit carry-skip adder

c_in

a0
b0

a1
b1

s0

s1
c_out

mux

Length 5
Length 1

ripple carry adder

1
0

19

False Path Analysis
 Is a path responsible for circuit delay?

 If the answer is no, can ignore the path for delay computation

 Check the falsity of long paths until we find the longest true
path
 How can we determine whether a path is a false path?

 Delay under-estimation is unacceptable
 Can lead to overlooking timing violation

 Delay over-estimation is acceptable, but not desirable
 Topological analysis may yield over-estimation, but never

under-estimation

20

False Path Analysis

Controlling and non-controlling values

0 0 1

Controlling value of AND

Controlled value of AND

1 1

Controlling value of OR

Controlled value of OR

Non-controlling value of AND

0

Non-controlling value of OR

1 1 0

21

False Path Analysis
Static Sensitization
 Static sensitization

 A path is statically-sensitizable if there exists an input
vector such that all the side-inputs to the path are of
non-controlling values
This is independent of gate delays

1
0

Controlling value!

These paths are not
statically-sensitizable

The longest true path is of length 2?

t=0
t=0

t=0

1
0

22

False Path Analysis
Static Sensitization
 Example

 The (dashed) path is responsible for delay!
 Delay under-estimation by static sensitization (delay = 2

when true delay = 3)
incorrect condition

0

0
1

2

1

2 3

00

23

False Path Analysis
Static Sensitization

Problem: The idea of forcing non-
controlling values to side inputs is okay,
but timing was ignored
 The same signal can have a controlling value

at one time and a non-controlling value at
another time

How about timing simulation as a correct
method?

24

False Path Analysis
Timing Simulation

22

11

44

11

11

0

0

2

1

4

2 3

Implies delay = 0 under input vector (0,1)
BUT!

0 4

25

False Path Analysis
Timing Simulation

22

11

4422

11

11

0

0 2

2

1

2 3

3 4

Implies delay = 4 under the same input (0,1) as before

2

26

False Path Analysis
Timing Simulation

Problem: If gate delays are reduced, delay
estimates can increase

Not acceptable since
Gate delays are just upper-bounds, actual

delay is in [0,d]
Delay uncertainty due to manufacturing

We are implicitly analyzing a family of circuits
where gate delays are within the upper-bounds

27

False Path Analysis
Timing Simulation

Definition: Given a circuit C and a delay
estimation method delay_estimate, if
C* is obtained from C by reducing some gate

delays, and
 delay_estimate(C*)  delay_estimate(C),
then delay_estimate has monotone
speedup property

Timing simulation does not have such a
property

28

False Path Analysis
Timing Simulation

2

1

4

1

1

0

0

2

1

4

3

4

4

means that the rising signalmeans that the rising signal
occurs anywhere between occurs anywhere between
t = t = -- and t = 4.and t = 4.

X-valued simulation
40

4

29

False Path Analysis
Timing Simulation

Timed 3-valued (0,1,X) simulation
 called X-valued simulation
monotone speedup property is satisfied

Underlying model of
 floating mode condition

Applies to “simple gate” networks only
 viability

Applies to general Boolean networks

30

False Path Analysis
Timing Simulation
 Checking the falsity of every path explicitly is

too expensive due to the exponential number of
paths

 Modern approach:
1. Start:

L = Ltop = topological longest path delay
Lold = 0

2. Binary search:
if (Delay(L)) (*) Ld = |L – Lold|/2, Lold = L, L = L + Ld
else Ld = |L – Lold|/2, Lold = L, L = L – Ld
if (L > Ltop or Ld < threshold) L = Lold, done

(*) Delay(L) = 1 if there is an input vector under which an output
gets stable only at time t where L  t ?
 Can be reduced to a SAT or timed-ATPG problem

31

SAT-Based False Path Analysis
 Decision problem:

Is there an input vector under which the output
gets stable only after t = T ?

 Idea:
1. Characterize the set of all input vectors S(T) that make

the output stable no later than t = T
2. Check if S(T) contains S (all possible input vectors)
Can be solved as a SAT problem:
Is S \ S(T) empty? - set difference + emptiness checking

 Let F and F(T) be the characteristic functions of S and S(T)
 Is F F(T) satisfiable?

32

SAT-Based False Path Analysis
 Example

a

b

c

d

e f

g

Assume all the PIs arrive at t = 0, all gate delays = 1
Is the output stable time t > 2?

33

SAT-Based False Path Analysis
 Example

 g(1,t=2) : the set of input vectors under which g gets stable
to value = 1 no later than t =2

 g(1,t=2) = d(1,t=1)  f(1,t=1) = (a(0,t=0)  b(0,t=0)) 
(c(1,t=0)  e(1,t=0)) = a b (c  ) = a b c = S1(t=2)

 g(1,t=) = onset = a b c = g(1,t=2) = S1

a

b

c

d

e f

g

Onset:
stabilized by t=2?

34

SAT-Based False Path Analysis
 Example

 g(0,t=2) : the set of input vectors under which g gets stable
to value = 0 no later than t=2

 g(0,t=2) = d(0,t=1)  f(0,t=1) = (a(1,t=0)  b(1,t=0)) 
(c(0,t=0)  e(0,t=0)) = (a+b) + (c  ) = a+b = S0(t=2)

 g(0,t=) = offset = a+b+c = S0

a

b

c

d

e f

g

35

SAT-Based False Path Analysis
 Example

 g(0,t=2) : the set of input vectors under which g gets stable
to 0 no later than t=2

 g(0,t=2) = a+b
 g(0,t=) = offset = a+b+c
 g(0,t=) \ g(0,t=2) = (a+b+c) (a+b) = abc satisfiable

a

b

c

d

e f

g

Offset:
NOT stabilized by t=2
under abc=000

36

Timing Analysis

Summary
 False-path-aware arrival time analysis is well-

understood
Practical algorithms exist

Remaining problems
Incremental analysis (make it so that a small change

in the circuit does not make the analysis start all over)
Integration with logic optimization
DSM issues such as cross-talk-aware false path

analysis

37

Timing Optimization
Several factors affecting circuit delay:
 Technology

 Design type (e.g. domino, static CMOS, etc.)
 Gate type
 Gate size

 Circuit structure
 Length of computation paths
 False paths
 Buffering

 Electrical parasitics
 Wire loads
 Layout

38

Timing Optimization
 Problem statement

Given:
 Initial circuit function description
 Library of primitive functions
 Performance constraints (arrival/required times)

Generate:
 An implementation of the circuit using the primitive

functions, such that:
performance constraints are met
circuit area is minimized

39

Timing Optimization

Design flow
Behavior optimization
(scheduling)

RTL synthesis

Logic synthesis
•Technology independent
•Technology mapping

Timing-driven place and route

Behavioral description

Logic and latches

Logic equations

Gate netlist

Layout

•Gate library
•Timing constraints
•Delay models

40

Timing Optimization
 Buffered circuit structure

function tree

buffer tree

41

Timing Optimization
 Circuit restructuring

 Reschedule operations to reduce computation time

 Timing-driven technology mapping
 Selection of gates from library

Minimum delay
 Similar to area minimization under the load independent

model
Minimize delay and area

 Implementation of buffer trees

 Gate/wire sizing

 Constant delay synthesis

42

Timing Optimization

Circuit restructuring
Global: Reduce depth of entire circuit

Partial collapsing
Boolean simplification

 Local: Mimic optimization techniques in adders
Carry lookahead (THR tree-height reduction)
Conditional sum (GST transformation)
Carry bypass (GBX transformation)

43

Timing Optimization

Circuit restructuring
 Performance measured by logic levels,

sensitisable paths, technology-dependent
delays

 Level-based optimization
Tree height reduction
Partial collapsing and simplification
Generalized select transform

Sensitisable path based optimization
Generalized bypass transform

44

Timing Optimization

Tree height reduction

n

l m

i j

h

k
3

6

5 5

1 4

1

0 0 0 0 2 0 0
a b c d e f g

i
1

0 0
a b

m

j

h

k
3

4
1

0 0 2 0 0
c d e f g

n’
duplicated
logic

1
200

5critical region
collapsed

critical region

45

Timing Optimization

Tree height reduction

i
1

0 0
a b

m

j

h

k
3

4
1

0 0 2 0 0
c d e f g

n’
Duplicated
logic

1
200

5

i
1

0 0
a b

m

j

h

k
3

4
1

0 0 2 0 0
c d e f g

1
2

0

3
5

n’

2

1

0

4

Collapsed
Critical region

New delay = 5

46

Timing Optimization
 Generalized bypass transform

 Make critical path false to bypass critical logic and speed
up circuit

fm=f fm+1 fn=g…

fm =f fm+1 fn=g… 0

1
g’

dg
__
df

Boolean difference s-a-0 redundant

47

Timing Optimization
 False path removal by logic duplication

fm+1 fm+2 fn…fm+k fm+k+1

f’m+1 f’m+2 f’m+k

fm+1 fm+2 fn…fm+k fm+k+10

… delay not increased

fm+k is the last node on the false path that fans out

controlling value of fm+1 48

c d e f g

c d e f g

c d e f g

Timing Optimization
 Generalized select transform

 Late signal feeds multiplexor

a

b

out

b

b

a=0

a=1

out
0

1

a

49

Timing Optimization

Summary
 There are various methods for delay

optimization at different synthesis stages
No single technique dominates
Most techniques (except false path removal by logic

duplication) ignore false paths when assessing the delay
and critical regions

