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Sequential Synthesis

part of the following slides are by 
courtesy of Andreas Kuehlmann
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Motivation

Pure combinational optimization can be 
suboptimal since relations across register 
boundaries are disregarded
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Overview of Circuit Optimization

Combinational Optimization

Clock Skew Scheduling

Retiming

Architectural Restructuring

System-Level Optimization
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Sequential Optimization Techniques

 Clock skew scheduling
 balance path delays by adjusting the relative clocking 

schedule of individual registers 

 Retiming
 balance path delays by moving registers within circuit 

topology
 can be interleaved with combinational optimization 

techniques

 Architectural restructuring
 add sequential redundancy

 fixed: does not change input/output behavior
 flexible: change input output behavior

 System-level optimization
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Integration in Design Flow

Optimization space
 significantly more optimization freedom at a higher level 

for improving performance, power, area, etc.
 Distance from physical implementation

 difficult to accurately model impacts on final 
implementation

 difficult to mathematically characterize optimization 
space

 Verification challenge
 departure from combinational comparison model would 

impede formal equivalence checking
 different simulation behaviors cause acceptance 

problems
 Necessity of tight tool integration!
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Sequential Timing Constraints
 The minimum clock period

 tclk(min) = tx + tc + tsu, where tx is the time 
after the active clock edge at which the X 
inputs are stable

 tclk(min) = tp + tc + tsu, if tx  tp

Active edge 
of clock

Q 
Outputs 
stable

D 
Inputs 
stable

Next active 
Edge of clock

Minimum clock period (tclk)

FF propagation 
delay (tp)

Combinational 
circuit delay 

(tc)

Setup time (tsu)

Comb. 
logic

DQ

X

clk
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Sequential Timing Constraints

 Setup-time constraint
 Cp  tp + tc

max + tsu Combinational 
logic (tc)

Launching
flip-flop

Capturing
flip-flop

FFjFFi

tjti

CLK

satisfied

tsu tp

tj
ti

tj+Cp
ti+Cp

tc

CLK=0 CLK=1

violated

tsu tp

tj
ti

tj+Cp
ti+Cp

tc

CLK=0 CLK=1

Cp: clock period
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Sequential Timing Constraints

 Hold-time constraint
 tp + tc

min th

violated

th

tp

tj
ti

tj+Cp
ti+Cp

tc

CLK=0 CLK=1

satisfied

th

tp

tj
ti

tj+Cp
ti+Cp

CLK=0 CLK=1

tc
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Clock Skew Scheduling

4

2

5

3r1

r2

r3

r4

Dmax=0 Dmax=14

Dmin=5Dmin=0

Dmax=0

Dmin=0
Skew =0
Tcycle=14

r1, r2, r3
r4

D’max=5 D’max=9

D’min=0D’min=5

Dmax=0

Dmin=0
Skew =5
Tcycle=9

r1, r2, r3
r4

Tcycle – Tsetup+ skew  Dmax

Thold+skew  Dmin

0  |skew| < Tcycle

0–5
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Clock Skew Scheduling

 By controlling clock delays on registers, clock 
frequency may be increased
 Do not change transition and output functions (not the 

case in retiming)
Good for functional verification

 May require sophisticated timing verification

 Clock skew: clock signal arrives at different 
registers at different times 
 Positive skew: the sending register gets the clock earlier 

than the receiving register
 Negative skew: the receiving register gets the clock 

earlier than the sending register
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Clock Skew Scheduling

 Pros
 Inexpensive “post synthesis” technique to further reduce 

clock period
 Combinational design model is preserved

 Cons
 Setup and hold time constraints must be obeyed

 including hold time constraints from scan chain

 Interleaving with combinational optimizations impossible
 Replication of clocking tree required
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Retiming

4

2

5

3r1

r2

r3

r4

Dmax=6 Dmax=8

Dmin=3Dmin=2

Dmax=0

Dmin=0

Skew =0
Tcycle=8

r’1 r4

4

2

5

3r’1 r4

Skew = 1
Tcycle= 7( )

14

Retiming

Optimize sequential 
circuits by 
repositioning registers
 Move registers so that 

clock cycle decreases or 
register count 
decreases

 Input-output behavior 
is preserved; however, 
transition and output 
functions are changed 
due to the register 
movement

s1
s2 s3

x

t1 t2 t4
x

t3
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Retiming

 Pros
 Only setup time constraint  (0 clock skew)
 Simple integration with other logical (e.g. combinational) 

or physical optimizations
E.g., iterative retiming and resynthesis

 Easy combination with clock skew scheduling to obtain 
global optimum

 Cons
 Change combinational model of design

Severe impact on verification methodology
 Inaccurate delay model
 Computation of equivalent reset state required
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Architectural Retiming

2
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Architectural Retiming

 Pros
 Smooth extension of regular retiming
 Potential to alleviate global performance bottlenecks by 

adding sequential redundancy and pipelining

 Cons
 Significant change of design structure

substantial impact on verification methodology

 Flexible architectural restructuring changes I/O behavior
existing RTL specification methods not always applicable
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Verification Issues

 Timing verification unchanged
 Functional verification affected

 Except for clock skew scheduling, sequential 
optimization does change register (transition) functions

 Traditional combinational equivalence checking not 
applicable

 Simulation runs not recognizable by designers -
acceptance problems

 Solution:
preserve retime function (mapping function) from synthesis 

for:
 reducing sequential EC problem back to combinational case

 no false positives possible!
 modifying simulation model to reproduce original simulation 

output
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Retiming Circuits

Objectives:
 Reduce clock cycle time
 Reduce register count (area)
 Reduce power, etc.

 Input: A netlist of gates and registers

Inputs

Outputs
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Retiming Circuits

 Circuit represented as retiming graph G(V, E) 
[Leiserson and Saxe 1983, 1991]
 V: vertex set representing logic gates
 E: edge set representing connections
 d(v) = delay of gate/vertex v,  (d(v)0)
 w(e) = number of registers on edge e,  (w(e)0)
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Retiming Circuits
 Example

 Synchronous circuit assumption: every cycle of a circuit has at 
least one register, i.e., no combinational loop

Circuit

Operation  delay

 3

+ 7

0

3 3

0

0
0

0
2

Retiming Graph

7
+



Host



The host node represents the 
environment that interacts with the 
circuit via the primary inputs and 
outputs
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Retiming Circuits

 For a path p :

 Path delay

 Path weight

Minimum clock cycle
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Retiming Circuits

Atomic operation
Move registers across a gate in a forward or 

backward direction

Does not affect gate functionality, but timing

Retime by 1

Retime by -1
(delayed by -1 cycle)

(delayed by 1 cycle)

24

Retiming Circuits
 Retiming can be formalized with a retime function 

r: V  Z, where Z is the set of integers
 I.e., a retime function performs integer labeling on 

vertices

 Weight update after retiming with r
 wr(e) = w(e) + r(v) - r(u), for edge e= (u,v)
 wr(p) = w(p) + r(t) - r(s), for path p from s to t

 A retiming with some r is legal if wr(e)  0, eE

vu
0

3 3

0

0
0

0
2

7

vu
0

3 3

0

1
1

0
1

7

r(u) = -1, r(v) = -1

u v
3

+2+1

wr(u,v) = 3 + 2 – 1 = 4
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Min-Cycle Retiming
 Problem Statement: (minimum cycle retiming)

Given G(V, E) with delay function d and weight function w, 
find a legal retiming r so that 

is minimized

 Retiming: two important matrices
 Register weight matrix

 Delay matrix

: ( ) 0
max { ( )}

rp w p
c d p




( , ) min{ ( ) : }p

p
W u v w p u v 

( , ) max{ ( ) : , ( ) ( , )}p

p
D u v d p u v w p W u v  
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Min-Cycle Retiming

 Example

For some constant , minimum clock cycle 
c    p, if d(p)   then w(p)  1

0

3 3

0

0
0

0
2

7

W = register path weight matrix
(minimum # registers on all paths 
between u and v)
D = path delay matrix
(maximum delay on the paths 
between u and v with w(p)=W(u,v))

v1
v2

v3

v0

Don’t count paths passing through the host!

W
V0 V1 V2 V3

V0
V1
V2
V3

0 2   2   2
0   0 0   0
0    0 0
0     0

D
V0 V1 V2  V3

V0
V1
V2
V3

0 3    6   13
13   3 6   13
10    3 10
7      7
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Min-Cycle Retiming
 Assume that we are asked to check if a retiming exists for a clock 

cycle 
 Legal retiming: wr(e)  0 for all e. Hence 

wr(e) = w(e) + r(v) - r(u)  0, or
r (u) - r (v)  w (e)

 For all paths p: u  v such that d(p)  , we require wr(p)  1. 
Thus

 Take the least w(p) (tightest constraint)   r(u)-r(v)  W(u,v)-1
 Note: This is independent of the path from u to v, so we just need to

apply it to u, v such that D(u,v)  

1
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1

1
0

0
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w p r

r v

w p r v v

r u

r

v










 

  

 



 




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Min-Cycle Retiming

 Example
Assume  = 7

Legality: 
r(u)-r(v)w(e)

0)()(

0)()(

0)()(

0)()(

2)()(
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31

21
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

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vrvr
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vrvr

1)()(

1)()(

1)()(

1)()(

1)()(

32

02

31

01

30








vrvr

vrvr

vrvr

vrvr

vrvr

D>7:
r(u)-r(v)W(u,v)-1

v1

v0 0

3

0

0
0

0
2

7

3

v2

v3

W
V0 V1 V2 V3

V0
V1
V2
V3

0   2   2   2
0   0   0   0

0   0   0

0     0

D
V0 V1 V2  V3

V0
V1
V2
V3

0   3    6 13
13 3    6 13
10  3 10
7     7

All constraints are in the difference-of-2-variable 
form and closely related to shortest path problem
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Min-Cycle Retiming

 Example

A solution is r(v0) = r(v3) = 0, 
r(v1) = r(v2) = -1

r(v1)r(v0)

r(v3)r(v2)

0

0

1

-1

-1

-1

0,-1

0,-1

0

0
-1

2

Constraint graph

0

0

0

0

0

Legality: 
r(u)-r(v)w(e)
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1)()(

1)()(

1)()(
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1)()(

32

02

31

01

30








vrvr

vrvr

vrvr

vrvr

vrvr

D>7:
r(u)-r(v)W(u,v)-1

Search shortest path on constraint graph: 
Bellman-Ford algorithm O(|V||E|) or O(|V|3) 

A solution exists if and only if there exists no 
negative weighted cycle
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Min-Cycle Retiming
 To find the minimum cycle time, do a binary search among 

the entries of the D matrix O(VE logV)

RetimeRetime

Clock cycle
= 3+3+7=13 Clock cycle = 7

V2v1

v0 0

3 3

0

0
0

0
2

7

+

 

Host

+

 

Host

r(v0) = r(v3) = 0, 
r(v1) = r(v2) = -1

V2v1

v0 0

3 3

0

1
1

0
1

7
v3 v3
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Min-Cycle Retiming

 Theorem: r is a legal retiming on G such that the 
clock cycle c   for some constant  if and only 
if
1. r(vh)=0

2. r(u)-r(v)  w(e) for every edge e(u,v)

3. r(u)-r(v) W(u,v)-1 (i.e. register count > 1) for every (u,
v) with D(u,v) > 

 Solve the integer linear programming problem
 Bellman-Ford method O(|V |3)
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Min-Cycle Retiming

Algorithm of optimal retiming:
1. Compute W and D

2. Binary search the minimum achievable clock 
period by applying Bellman-Ford algorithm to 
check the satisfication of the prior Theorem

3. Derive r(v) under the minimum achievable 
clock period found in Step 2

Complexity O(|V |3 lg|V |)
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Min-Cycle Retiming

 Two more algorithms:
1. Relaxation based:

 Repeatedly find critical path 
 Retime vertex at end of path by +1  (O(VElogV))

2. Also, Mixed Integer Linear Program formulation

+1

u
Critical path

v
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Min-Area Retiming
 Goal: minimize number of registers used

where av is a constant

 

:

:

min ( )
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  
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 
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
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Min-Area Retiming

Minimize: 

Subject to:
wr(e) = w(e) + r(v) - r(u)  0

Note: It is reducible to a flow problem

( )v
v V

a r v


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Retiming Issues

 Computation of equivalent initial states 
 Equivalent initial states may not always exist

 General solution requires replication of logic for 
initialization

 Timing models
 Too far away from actual implementation

1

0 ?

?
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Retiming + Clock Scheduling

Mathematical formulation
 s: ER, a real edge labeling
 s(e) denotes the clock signal delay of all registers of e

 In addition to the register weight matrix and 
delay matrix for the maximum delay, we also 
need the minimum paths delays

min ( , ) min{ ( ) : , ( ) ( , )}p

p
D u v d p u v w p w u v  

( , ) min{ ( ) : }p

p
W u v w p u v 

( , ) max{ ( ) : , ( ) ( , )}p

p
D u v d p u v w p w u v  
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Retiming + Clock Scheduling

 A valid retiming and clock skew schedule is an 
assignment to r and s such that:

 Solution Mixed Integer Linear Program (MILP)

min

(1)     0

(2)    ( ', ), ( , ') :

              ( ', ) 0 ( , ') 0 ( , ) 0

                    ( , ) ( ', ) ( , ')

                    ( , ) ( ', ) ( , ')

r

hold

clock setup

w

u u v v

w u u w v v W u v

D u v s u u s v v T

D u v s u u s v v T T




     
   

   
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Retiming & Resynthesis

Combine retiming and combinational 
optimization
Retime registers such that the circuit has a 

large combinational logic block for optimization

Resynthesize the combinational logic block
with combinational logic minimization
techniques

Retiming and resynthesis can be iterated
Can achieve any state re-encoding
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Retiming & Resynthesis

 Example

g1

g3

d
f

g2

a

b

c

e

(a)

g1

g3

d
f

g2

a

b

c

e

(b)

-1

g3

d
f

g2
a
b

c

e

(c)

-1

g3

d
f

g2
a
b

c

e

(d)


