Logic Synthesis and
Veritication I

Jie-Hong Roland Jiang
NI

/\\
Department of Electrical Engineering ‘\
National Taiwan University

Fall 2011

Sequential Synthesis g

part of the following slides are by
courtesy of Andreas Kuehlmann

2

Motivation

CO0Pure combinational optimization can be
suboptimal since relations across register
boundaries are disregarded

Overview of Circuit Optimization

A A

System-Level Optimization

Architectural Restructuring

Retiming

Clock Skew Scheduling

Verification Challenge
Necessity of Integrated Solution

Combinational Optimization

Optimization Space
Distance from Physical Implementation

Sequential Optimization Techniques

] Clock skew scheduling
B balance path delays by adjusting the relative clocking
schedule of individual registers
0 Retiming
B balance path delays by moving registers within circuit
topology
B can be interleaved with combinational optimization
techniques
0 Architectural restructuring

B add sequential redundancy
[CIfixed: does not change input/output behavior
Cflexible: change input output behavior

0 System-level optimization

Integration 1n Design Flow

0 Optimization space
B significantly more optimization freedom at a higher level
for improving performance, power, area, etc.
0 Distance from physical implementation

B difficult to accurately model impacts on final
iImplementation

® difficult to mathematically characterize optimization
space
] Verification challenge

® departure from combinational comparison model would
impede formal equivalence checking

m different simulation behaviors cause acceptance
problems

0 Necessity of tight tool integration!

Sequential Timing Constraints

O The minimum clock peri
e imum clock pe od . _ NN pa VR
B t, (min) =t + t + t,, where t, is the time logic
after the active clock edge at which the X
inputs are stable
m ty(min) =t, + t + tg, if t, <t QP
!
clk

Minimum clock period (t.,)

I I I
| N — AN -\ AN -\ |
FF propagation Combinational Setup time (tg,)
delay (t,) circuit delay
Active edge Q (t) D Next active
of clock Outputs Inputs Edge of clock

stable stable

Sequential Timing Constraints

. i Launchi Capturi
[0 Setup-time constraint Himfop fip-flop
| Cp > tp + M+ { FF, %[Combinational]_% FF,
A logic (t.) A
CLk 1% 0
tj+Cp t 1 tj+Cp 1 t, t,
t+C, | t, t+C, | t,
t, tp L tp
\ 4
t. t.
CLK=0|CLK=1 CLK=0|CLK=1
C,: clock period

satisfied violated

Sequential Timing Constraints

] Hold-time constraint
Wt + tmn >t

t+C, 1 t; t+C, 1 t;
t+C, | t, t+C, | t,

CLK=0 CLK=0

satisfied violated

Clock Skew Scheduling
||ﬁ\ Teycle = Tsep™ SKEW 2_[)maX
r

T, gtskew <D,
0<|skew|<T

cycle

r

m‘ @‘ Dmax:0 Skew =0
r

rl, r2, r3

@ | D’maX%‘ DmaX—O Skew =5

| D’i,=0 | Dmin:0 Tcycle:9
r

-5 0 10

Clock Skew Scheduling

0 By controlling clock delays on registers, clock
frequency may be increased

B Do not change transition and output functions (not the
case in retiming)
[0 Good for functional verification

B May require sophisticated timing verification

0 Clock skew: clock signal arrives at different
registers at different times

B Positive skew: the sending register gets the clock earlier
than the receiving register

B Negative skew: the receiving register gets the clock
earlier than the sending register

11

Clock Skew Scheduling

[Pros
B Inexpensive “post synthesis” technique to further reduce
clock period

B Combinational design model is preserved

0 Cons
B Setup and hold time constraints must be obeyed
Oincluding hold time constraints from scan chain
B Interleaving with combinational optimizations impossible

B Replication of clocking tree required

12

Retiming

| |
Ir4 |
| |
Ir4 |
Skew =0
Dmax_6 ‘ max:8 ‘ Dmax:0 TCyCle:S
Din=2 | Din=3 | Din=0 (Skew = l)
TC cle: 7
r r, y
13
Retiming
] Optimize sequential
circuits by .
repositioning registers \ﬂ “ 2 t)
t

clock cycle decreases or
register count
decreases

B Input-output behavior \ﬁ >

B Move registers so that X—HFDﬂ : §>H el
i

is preserved; however, X s? s
transition and output }) H W
functions are changed

due to the register

movement

14

Retiming

I Pros
B Only setup time constraint (O clock skew)

B Simple integration with other logical (e.g. combinational)
or physical optimizations
OE.qg., iterative retiming and resynthesis

B Easy combination with clock skew scheduling to obtain
global optimum

] Cons

B Change combinational model of design
0 Severe impact on verification methodology
B Inaccurate delay model
B Computation of equivalent reset state required

15

Architectural Retiming

16

Architectural Retiming

[Pros
B Smooth extension of regular retiming

B Potential to alleviate global performance bottlenecks by
adding sequential redundancy and pipelining

O Cons
B Significant change of design structure
O substantial impact on verification methodology
B Flexible architectural restructuring changes 1/0 behavior
O existing RTL specification methods not always applicable

17

Verification Issues

0 Timing verification unchanged

0 Functional verification affected

B Except for clock skew scheduling, sequential _
optimization does change register (transition) functions

B Traditional combinational equivalence checking not
applicable

B Simulation runs not recognizable by designers -
acceptance problems

B Solution:
Opreserve retime function (mapping function) from synthesis
for:
= reducing sequential EC problem back to combinational case
= no false positives possible!

= modifying simulation model to reproduce original simulation
output

18

Retiming Circuits

] Objectives:
B Reduce clock cycle time
B Reduce register count (area)
B Reduce power, etc.

I Input: A netlist of gates and registers

Outputs

19

Retiming Circuits

1 Circuit represented as retiming graph
B V: vertex set representing logic gates
B E: edge set representing connections

® d(v) = delay of gate/vertex v,
B w(e) = number of registers on edge e,

20

Retiming Circuits

O Example

B Synchronous circuit assumption: every cycle of a circuit has at
least one register, i.e., no combinational loop

©
H > a
ost 0
¥ Lo 0
© o N
The host node represents the Operation |delay

environment that interacts with the
circuit via the primary inputs and
outputs

21

Retiming Circuits

OForapathp : Vv, —>V, >V, —V,
k
® Path delay d(p) :Zd(vi) (includes endpoints)
P
® Path weight w(p)=> w(e)
i=0
0 Minimum clock cycle
Path with
c= max {d _
p:W(p)_O{ (p)} 0 0 W(p)=0
2

22

Retiming Circuits

CJAtomic operation

M Move registers across a gate in a forward or
backward direction

Retime by -1
(delayed by -1 cycle)
RN

g

Retime by 1
(delayed by 1 cycle)

= o

B Does not affect gate functionality, but timing

23

Retiming Circuits

I
O Retiming can be formalized with a retime function
r: V.o 7, where Z is the set of integers
B |.e., a retime function performs integer labeling on
vertices
+1 +2

O Weight update after retiming with r

® w,(e) = w(e) + r(v) - r(u), for edge e= (u,v) RN 3 RN
B w,(p) = w(p) + r(t) - r(s), for path p from s to t @—@
O A retiming with some r is if w.(e) >0, VeeE W (u V) =34+2-1=4
r 1
0 [7 0)
(0 o 0 o !

\/
4 1
2 9 , O () = -1, r(v) = -1 © 6 ©

24

Min-Cycle Retiming

O Problem Statement: (minimum cycle retiming)

Given G(V, E) with delay function d and weight function w,
find a legal retiming r so that

¢c= max {d(p)}

p:w, (p)=0
IS minimized
O Retiming
B Register weight matrix
W (u,v) = min{w(p) :u—"—v}
p
B Delay matrix

D(u,v) = max{d(p) :u——>v,w(p) =W (u,v)}

25

VO
V1
V2
V3

Min-Cycle Retiming

0 Example
v3
0 © For some constant o, minimum clock cycle
o @ 0 0 c<a < Vp,ifd(p) > athen w(p) > 1
2
e 0 e v2
vl

(minimum # registers on all paths
W D between u and v)

(maximum delay on the paths

0222 ¢3e613 VO . -

0000 1323 613 V1 between u and v with w(p)=W(u,v))
0L 0O 101 310 V2

oL 1o 71 L 7 V3 Don’t count paths passing through the host!

26

Min-Cycle Retiming

0 Assume that we are asked to check if a retiming exists for a clock

cycle o

O Legal retiming: w,(e) > O for all e. Hence

w,.(e) = w(e) +r(v) -r(u) >0, or

ru)-r()<w((e)

O For all paths p: u — v such that d(p) > a, we require w,(p) > 1.

Thus

7~—
LN

o

1<w,(p) = Y w,(e)

(W) +r(vi)—r(v)]

w(p) +r(vi) —r(v)

=w(p)+r(v)—r(u)
0 Take the least w(p) (tightest constraint)

B Note: This is independent of the path from u to v, so we just need to
apply it to u, v such that D(u,v) > a

r(u)-r(v) < W(u,v)-1

27

Min-Cycle Retiming

0 Example
Assume o =7

r(Vo) o r(Vl) <2
r(Vl) o r(Vz) <0
r(Vl) o r(Va) <0
r(Vz) o r(Vs) <0
I’(V3) - r(Vo) <0

r(vo) —r(v;) <1

r(Vl) o r(Vo) <-1
r(Vl) o I’(V3) <-1
r(v,)—r(vo) <-1
r(v,)—r(v;)<-1

All constraints are in the difference-of-2-variable
form and closely related to shortest path problem

VO
V1
V2
V3

W D
VOV1V2V3 VOV1V2 V3

0222 (g3 613
0000 133 6 13
0 L0O 10 | 3 10

0O 1L L O 7 L 1 7

VO
V1
V2
V3

Min-Cycle Retiming

0 Example

r(vo)—r(vl)SZ r(Vo)_r(Vg)Sl 0

r(Vl)_r(Vz)SO r(Vl)_r(Vo)S_l
I’(Vl)—l’(Vg)SO r(Vl)_r(V3)§_1
r(Vz)_r(V3)§O r(Vz)_r(Vo)S_l
r(V3)_r(Vo)§O I’(VZ)—F(V3)S—1

Search shortest path on constraint graph:
Bellman-Ford algorithm O(|V||E|) or O(|V|3)

A solution exists if and only if there exists no
negative weighted cycle

Constraint graph

r(vo)
0 0 1
1
0 0
r(v2) 01

r(v3)

A solution is r(v,) = r(v5) =0,

r(vy) =r(vy) =-1

29

Min-Cycle Retiming

O To find the minimum cycle time, do a binary search among

the entries of the D matrix

v3
, © f(Vg) = (V) = 0,
0@ 0 0 r(vy)) =r(vy) =-1
\Y;
2
®© 6 0O
vl V2
e Retime
Host
H
o (5]
Clock cycle

= 3+3+7=13

v3
, ©
vO Q 1
N
vl
©
Host ——
I
(5
Clock cycle =7

30

Min-Cycle Retiming

0 Theorem: r is a legal retiming on G such that the
clock cycle ¢ < a for some constant o if and only
if

1. r(v,)=0
2. r(u)-r(v) < w(e) for every edge e(u,v)

3. r(u)-r(v) £W(u,v)-1 (i.e. register count > 1) for every (u,
v) with D(u,v) > a

] Solve the integer linear programming problem
B Bellman-Ford method O(]V |3)

31

Min-Cycle Retiming

ClAlgorithm of optimal retiming:
1. Compute W and D

2. Binary search the minimum achievable clock
period by applying Bellman-Ford algorithm to
check the satisfication of the prior Theorem

3. Derive r(v) under the minimum achievable
clock period found in Step 2

O Complexity O(|V |3 Ig|V |)

32

Min-Cycle Retiming

0 Two more algorithms:
1.
B Repeatedly find critical path
B Retime vertex at end of path by +1

' RN
\
Ve \\
v

Critical path

33

Min-Area Retiming

O minimize number of registers used
minN, =>"w,(e)
ek

= D (we)+r(v)-r(u))

eu—-v

=D w(e)+ D, (r(v)—r(u))

eu-v

=N+ (r(v)—-r(u)

=N+ _[r(v)(# fanin(v) - # fanout(v)]

=N+> a,r(v)

where a, is a constant

34

Min-Area Retiming

COOMinimize:

> a,r(v)

veV

CdSubject to:
w.(e) =w(e) +r(v) -r(u) >0

CINote: It Is reducible to a

35

Retiming Issues

0 Computation of equivalent initial states
B Equivalent initial states may not always exist

1
0 ?
B General solution requires replication of logic for
initialization

0 Timing models
B Too far away from actual implementation

36

Retiming + Clock Scheduling

0 Mathematical formulation
B s: E>R, a real edge labeling
M s(e) denotes the clock signal delay of all registers of e

] In addition to the register weight matrix and
delay matrix for the maximum delay, we also
need the minimum paths delays

W (u,v) = min{w(p) :u—>v}
D(u,v) = ma>?{d(p) ‘u—LL—>v,w(p)=w(u,v)}

Dyin (u,v) = min{d (p) :u——v, w(p) = w(u,v)}

37

Retiming + Clock Scheduling

0 A valid retiming and clock skew schedule is an
assignment to r and s such that:
@ w >0
(2) Vv(u'u),(v,v"):
w(u'u)>0Aw(v,v)>0AW(u,v)=0=
D...(u,v)+s(u’u)—s(v,v) =T, 4 A
D(u,v)+s(u',u)—s(v,v) <T, T

lock — 'setup

0 Solution Mixed Integer Linear Program (MILP)

38

Retiming & Resynthesis

C0Combine retiming and combinational
optimization
M Retime registers such that the circuit has a
large combinational logic block for optimization

M Resynthesize the combinational logic block
with combinational logic minimization
techniques

B Retiming and resynthesis can be iterated
COCan achieve any state re-encoding

39

Retiming & Resynthesis

0 Example

= aly -

B » -
B B

40

