
1

Logic Synthesis and
Verification

Jie-Hong Roland Jiang
江介宏

Department of Electrical Engineering
National Taiwan University

Fall 2011

2

Sequential Synthesis

part of the following slides are by
courtesy of Andreas Kuehlmann

3

Motivation

Pure combinational optimization can be
suboptimal since relations across register
boundaries are disregarded

4

Overview of Circuit Optimization

Combinational Optimization

Clock Skew Scheduling

Retiming

Architectural Restructuring

System-Level Optimization

O
p

ti
m

iz
at

io
n

 S
p

ac
e

D
is

ta
n

ce
 f

ro
m

 P
h

ys
ic

al
 Im

p
le

m
en

ta
ti

o
n

V
er

if
ic

at
io

n
 C

h
al

le
n

g
e

N
ec

es
si

ty
 o

f
In

te
g

ra
te

d
 S

o
lu

ti
o

n

5

Sequential Optimization Techniques

 Clock skew scheduling
 balance path delays by adjusting the relative clocking

schedule of individual registers

 Retiming
 balance path delays by moving registers within circuit

topology
 can be interleaved with combinational optimization

techniques

 Architectural restructuring
 add sequential redundancy

 fixed: does not change input/output behavior
 flexible: change input output behavior

 System-level optimization

6

Integration in Design Flow

Optimization space
 significantly more optimization freedom at a higher level

for improving performance, power, area, etc.
 Distance from physical implementation

 difficult to accurately model impacts on final
implementation

 difficult to mathematically characterize optimization
space

 Verification challenge
 departure from combinational comparison model would

impede formal equivalence checking
 different simulation behaviors cause acceptance

problems
 Necessity of tight tool integration!

7

Sequential Timing Constraints
 The minimum clock period

 tclk(min) = tx + tc + tsu, where tx is the time
after the active clock edge at which the X
inputs are stable

 tclk(min) = tp + tc + tsu, if tx  tp

Active edge
of clock

Q
Outputs
stable

D
Inputs
stable

Next active
Edge of clock

Minimum clock period (tclk)

FF propagation
delay (tp)

Combinational
circuit delay

(tc)

Setup time (tsu)

Comb.
logic

DQ

X

clk

8

Sequential Timing Constraints

 Setup-time constraint
 Cp  tp + tc

max + tsu Combinational
logic (tc)

Launching
flip-flop

Capturing
flip-flop

FFjFFi

tjti

CLK

satisfied

tsu tp

tj
ti

tj+Cp
ti+Cp

tc

CLK=0 CLK=1

violated

tsu tp

tj
ti

tj+Cp
ti+Cp

tc

CLK=0 CLK=1

Cp: clock period

9

Sequential Timing Constraints

 Hold-time constraint
 tp + tc

min th

violated

th

tp

tj
ti

tj+Cp
ti+Cp

tc

CLK=0 CLK=1

satisfied

th

tp

tj
ti

tj+Cp
ti+Cp

CLK=0 CLK=1

tc

10

Clock Skew Scheduling

4

2

5

3r1

r2

r3

r4

Dmax=0 Dmax=14

Dmin=5Dmin=0

Dmax=0

Dmin=0
Skew =0
Tcycle=14

r1, r2, r3
r4

D’max=5 D’max=9

D’min=0D’min=5

Dmax=0

Dmin=0
Skew =5
Tcycle=9

r1, r2, r3
r4

Tcycle – Tsetup+ skew  Dmax

Thold+skew  Dmin

0  |skew| < Tcycle

0–5

11

Clock Skew Scheduling

 By controlling clock delays on registers, clock
frequency may be increased
 Do not change transition and output functions (not the

case in retiming)
Good for functional verification

 May require sophisticated timing verification

 Clock skew: clock signal arrives at different
registers at different times
 Positive skew: the sending register gets the clock earlier

than the receiving register
 Negative skew: the receiving register gets the clock

earlier than the sending register

12

Clock Skew Scheduling

 Pros
 Inexpensive “post synthesis” technique to further reduce

clock period
 Combinational design model is preserved

 Cons
 Setup and hold time constraints must be obeyed

 including hold time constraints from scan chain

 Interleaving with combinational optimizations impossible
 Replication of clocking tree required

13

Retiming

4

2

5

3r1

r2

r3

r4

Dmax=6 Dmax=8

Dmin=3Dmin=2

Dmax=0

Dmin=0

Skew =0
Tcycle=8

r’1 r4

4

2

5

3r’1 r4

Skew = 1
Tcycle= 7()

14

Retiming

Optimize sequential
circuits by
repositioning registers
 Move registers so that

clock cycle decreases or
register count
decreases

 Input-output behavior
is preserved; however,
transition and output
functions are changed
due to the register
movement

s1
s2 s3

x

t1 t2 t4
x

t3

15

Retiming

 Pros
 Only setup time constraint (0 clock skew)
 Simple integration with other logical (e.g. combinational)

or physical optimizations
E.g., iterative retiming and resynthesis

 Easy combination with clock skew scheduling to obtain
global optimum

 Cons
 Change combinational model of design

Severe impact on verification methodology
 Inaccurate delay model
 Computation of equivalent reset state required

16

Architectural Retiming

2

2 2r2

r2

r3

r4

r1

.

{ 20

2

2 2

r2

r3

r4

.

{ 10{ 10

r’1

r’4

17

Architectural Retiming

 Pros
 Smooth extension of regular retiming
 Potential to alleviate global performance bottlenecks by

adding sequential redundancy and pipelining

 Cons
 Significant change of design structure

substantial impact on verification methodology

 Flexible architectural restructuring changes I/O behavior
existing RTL specification methods not always applicable

18

Verification Issues

 Timing verification unchanged
 Functional verification affected

 Except for clock skew scheduling, sequential
optimization does change register (transition) functions

 Traditional combinational equivalence checking not
applicable

 Simulation runs not recognizable by designers -
acceptance problems

 Solution:
preserve retime function (mapping function) from synthesis

for:
 reducing sequential EC problem back to combinational case

 no false positives possible!
 modifying simulation model to reproduce original simulation

output

19

Retiming Circuits

Objectives:
 Reduce clock cycle time
 Reduce register count (area)
 Reduce power, etc.

 Input: A netlist of gates and registers

Inputs

Outputs

20

Retiming Circuits

 Circuit represented as retiming graph G(V, E)
[Leiserson and Saxe 1983, 1991]
 V: vertex set representing logic gates
 E: edge set representing connections
 d(v) = delay of gate/vertex v, (d(v)0)
 w(e) = number of registers on edge e, (w(e)0)

21

Retiming Circuits
 Example

 Synchronous circuit assumption: every cycle of a circuit has at
least one register, i.e., no combinational loop

Circuit

Operation delay

 3

+ 7

0

3 3

0

0
0

0
2

Retiming Graph

7
+



Host



The host node represents the
environment that interacts with the
circuit via the primary inputs and
outputs

22

Retiming Circuits

 For a path p :

 Path delay

 Path weight

Minimum clock cycle














1

0

0

)()(

)()(

k

i
i

k

i
i

ewpw

vdpd endpoints) (includes

: () 0
max { ()}

p w p
c d p




0 11

0 1 1

ke ee

k kv v v v


  

c = 13

Path with

w(p)=00

3 3

0

0
0

0
2

7

23

Retiming Circuits

Atomic operation
Move registers across a gate in a forward or

backward direction

Does not affect gate functionality, but timing

Retime by 1

Retime by -1
(delayed by -1 cycle)

(delayed by 1 cycle)

24

Retiming Circuits
 Retiming can be formalized with a retime function

r: V  Z, where Z is the set of integers
 I.e., a retime function performs integer labeling on

vertices

 Weight update after retiming with r
 wr(e) = w(e) + r(v) - r(u), for edge e= (u,v)
 wr(p) = w(p) + r(t) - r(s), for path p from s to t

 A retiming with some r is legal if wr(e)  0, eE

vu
0

3 3

0

0
0

0
2

7

vu
0

3 3

0

1
1

0
1

7

r(u) = -1, r(v) = -1

u v
3

+2+1

wr(u,v) = 3 + 2 – 1 = 4

25

Min-Cycle Retiming
 Problem Statement: (minimum cycle retiming)

Given G(V, E) with delay function d and weight function w,
find a legal retiming r so that

is minimized

 Retiming: two important matrices
 Register weight matrix

 Delay matrix

: () 0
max { ()}

rp w p
c d p




(,) min{ () : }p

p
W u v w p u v 

(,) max{ () : , () (,)}p

p
D u v d p u v w p W u v  

26

Min-Cycle Retiming

 Example

For some constant , minimum clock cycle
c    p, if d(p)   then w(p)  1

0

3 3

0

0
0

0
2

7

W = register path weight matrix
(minimum # registers on all paths
between u and v)
D = path delay matrix
(maximum delay on the paths
between u and v with w(p)=W(u,v))

v1
v2

v3

v0

Don’t count paths passing through the host!

W
V0 V1 V2 V3

V0
V1
V2
V3

0 2 2 2
0 0 0 0
0  0 0
0   0

D
V0 V1 V2 V3

V0
V1
V2
V3

0 3 6 13
13 3 6 13
10  3 10
7   7

27

Min-Cycle Retiming
 Assume that we are asked to check if a retiming exists for a clock

cycle 
 Legal retiming: wr(e)  0 for all e. Hence

wr(e) = w(e) + r(v) - r(u)  0, or
r (u) - r (v)  w (e)

 For all paths p: u  v such that d(p)  , we require wr(p)  1.
Thus

 Take the least w(p) (tightest constraint) r(u)-r(v)  W(u,v)-1
 Note: This is independent of the path from u to v, so we just need to

apply it to u, v such that D(u,v)  

1

0

1

1
0

0

1 () ()

[(

() () (

) () ()]

() ()

)

()

k

r r i
i

k

i i i
i

k

w p w e

w e r v

w p r

r v

w p r v v

r u

r

v










 

  

 



 





28

Min-Cycle Retiming

 Example
Assume  = 7

Legality:
r(u)-r(v)w(e)

0)()(

0)()(

0)()(

0)()(

2)()(

03

32

31

21

10







vrvr

vrvr

vrvr

vrvr

vrvr

1)()(

1)()(

1)()(

1)()(

1)()(

32

02

31

01

30








vrvr

vrvr

vrvr

vrvr

vrvr

D>7:
r(u)-r(v)W(u,v)-1

v1

v0 0

3

0

0
0

0
2

7

3

v2

v3

W
V0 V1 V2 V3

V0
V1
V2
V3

0 2 2 2
0 0 0 0

0  0 0

0   0

D
V0 V1 V2 V3

V0
V1
V2
V3

0 3 6 13
13 3 6 13
10  3 10
7   7

All constraints are in the difference-of-2-variable
form and closely related to shortest path problem

29

Min-Cycle Retiming

 Example

A solution is r(v0) = r(v3) = 0,
r(v1) = r(v2) = -1

r(v1)r(v0)

r(v3)r(v2)

0

0

1

-1

-1

-1

0,-1

0,-1

0

0
-1

2

Constraint graph

0

0

0

0

0

Legality:
r(u)-r(v)w(e)

0)()(

0)()(

0)()(

0)()(

2)()(

03

32

31

21

10







vrvr

vrvr

vrvr

vrvr

vrvr

1)()(

1)()(

1)()(

1)()(

1)()(

32

02

31

01

30








vrvr

vrvr

vrvr

vrvr

vrvr

D>7:
r(u)-r(v)W(u,v)-1

Search shortest path on constraint graph:
Bellman-Ford algorithm O(|V||E|) or O(|V|3)

A solution exists if and only if there exists no
negative weighted cycle

30

Min-Cycle Retiming
 To find the minimum cycle time, do a binary search among

the entries of the D matrix O(VE logV)

RetimeRetime

Clock cycle
= 3+3+7=13 Clock cycle = 7

V2v1

v0 0

3 3

0

0
0

0
2

7

+

 

Host

+

 

Host

r(v0) = r(v3) = 0,
r(v1) = r(v2) = -1

V2v1

v0 0

3 3

0

1
1

0
1

7
v3 v3

31

Min-Cycle Retiming

 Theorem: r is a legal retiming on G such that the
clock cycle c   for some constant  if and only
if
1. r(vh)=0

2. r(u)-r(v)  w(e) for every edge e(u,v)

3. r(u)-r(v) W(u,v)-1 (i.e. register count > 1) for every (u,
v) with D(u,v) > 

 Solve the integer linear programming problem
 Bellman-Ford method O(|V |3)

32

Min-Cycle Retiming

Algorithm of optimal retiming:
1. Compute W and D

2. Binary search the minimum achievable clock
period by applying Bellman-Ford algorithm to
check the satisfication of the prior Theorem

3. Derive r(v) under the minimum achievable
clock period found in Step 2

Complexity O(|V |3 lg|V |)

33

Min-Cycle Retiming

 Two more algorithms:
1. Relaxation based:

 Repeatedly find critical path
 Retime vertex at end of path by +1 (O(VElogV))

2. Also, Mixed Integer Linear Program formulation

+1

u
Critical path

v

34

Min-Area Retiming
 Goal: minimize number of registers used

where av is a constant

 

:

:

min ()

(() () ())

() (() ())

(() ())

()(# () # ()

()

r r
e E

e u v

e E e u v

u v

v V

V
v V

N w e

w e r v r u

w e r v r u

N r v r u

N r v fanin v fanout v

N a r v





 









  

  

  

  

 





 







35

Min-Area Retiming

Minimize:

Subject to:
wr(e) = w(e) + r(v) - r(u)  0

Note: It is reducible to a flow problem

()v
v V

a r v



36

Retiming Issues

 Computation of equivalent initial states
 Equivalent initial states may not always exist

 General solution requires replication of logic for
initialization

 Timing models
 Too far away from actual implementation

1

0 ?

?

37

Retiming + Clock Scheduling

Mathematical formulation
 s: ER, a real edge labeling
 s(e) denotes the clock signal delay of all registers of e

 In addition to the register weight matrix and
delay matrix for the maximum delay, we also
need the minimum paths delays

min (,) min{ () : , () (,)}p

p
D u v d p u v w p w u v  

(,) min{ () : }p

p
W u v w p u v 

(,) max{ () : , () (,)}p

p
D u v d p u v w p w u v  

38

Retiming + Clock Scheduling

 A valid retiming and clock skew schedule is an
assignment to r and s such that:

 Solution Mixed Integer Linear Program (MILP)

min

(1) 0

(2) (',), (, ') :

 (',) 0 (, ') 0 (,) 0

 (,) (',) (, ')

 (,) (',) (, ')

r

hold

clock setup

w

u u v v

w u u w v v W u v

D u v s u u s v v T

D u v s u u s v v T T




     
   

   

39

Retiming & Resynthesis

Combine retiming and combinational
optimization
Retime registers such that the circuit has a

large combinational logic block for optimization

Resynthesize the combinational logic block
with combinational logic minimization
techniques

Retiming and resynthesis can be iterated
Can achieve any state re-encoding

40

Retiming & Resynthesis

 Example

g1

g3

d
f

g2

a

b

c

e

(a)

g1

g3

d
f

g2

a

b

c

e

(b)

-1

g3

d
f

g2
a
b

c

e

(c)

-1

g3

d
f

g2
a
b

c

e

(d)

