Logic Synthesis and
Verification

Jie-Hong Roland Jiang
LR

/\\
Department of Electrical Engineering I\
National Taiwan University

Fall 2011

Equivalence and Property
Checking I

part of the following slides are by
courtesy of Andreas Kuehlmann

2

Equivalence Checking in
Microprocessor Design

Architectural Specification

(informal) / Property Checking

(Verilog, VHDL)

RTL Specification < Cycle Simulation <: Test Programs

— - Equivalence
Circuit Implementation Checking
(Schematic)
Layout Implementation Circuit Simulation
(GDS 1)

Equivalence Checking in ASIC Design

RTL
Specification

Cell-Based \‘ Equivalence

Synthesis Checking

Property Checking

s

&

Standard Cell
Implementation

o

Engineering Equivalence

Changes (ECOs) / Checking

i
>
s

Implementation




Finite State Machine Model
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B SO: Initial State(s)
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Sequential Equivalence Checking

O Definition: Two FSMs M, and M, are functionally equivalent iff the
product machine M; x M, roduces a constant O sequence for all

valid input sequences {)%(B .

0 A(X,(s1,8)) =
— \ A1(X,S;) @ A2(X,S,)

XD, X@,... X0}
M, :jD— {0,0....0}
= A
ool
O
A(X,(s1,8,)) =
(81(x,8,), 82(X,S,))
M, i

General Approach to SEC

Product state space S=S, x S,

@ Dbad states

i.e. IX.A(X,8) =0
@

i.e. VX.A(X,S)=0 initial state SO

R: states s with r(s) =

R’= S\R: states s with r(s) =

Find subset R ¢ S with characteristic function r: S— {0,1} such that:
1.r(s9)=1 (initial state is in R)

2.(r(s) =1) = r(A(x,s)) =1 (all R states cannot go to R’ states)
3.(r(s) =1) = A(x,s) =0  (all R states are good states)

Sequential Equivalence Checking

O Proving sequential equivalence under state set R
1. Check (by SAT) that initial state SO is contained in R, i.e. r(s°)
=1

2. Check (by SAT) that
O states in R are :
VX. r(s) = -A(X,8), i.e., r(s) A A(x,s) unsatisfiable
O all states from R lead only to states in R:
VX. r(s) = r(A(x,s)), i.e., r(s) A —=r(A(x,s)) unsatisfiable

X T A H} 0?
S 4 >° H} 0?
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Soundness and Completeness

Inductive State Set Derivation

O With a candidate state set R we can =
® prove equivalence B state traversal until no more states can be explored
p qu ) Oforward vs. backward
Othat means the method is “sound” Oexplicit vs. implicit (symbolic)
Owe will not produce “false positives”
a
® but not disprove equivalence B equivalent state encoding in both machines
Othat means the method is “incomplete” [ | (s))r/)rgitr?]iezszﬁi(t)?]ol provides hint for R from sequential
Owe may produce “false negatives” O manual register correspondence
Oautomatic register correspondence
a
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Combinational EC Combinational EC

O Industrial equivalence checkers almost exclusively use an
combinational EC paradigm

B sequential EC is too complex, can only be applied to design
with a few hundred state bits

B combinational methods scale linearly with the design size for a
given fixed size and “functional complexity” of the individual
cones

O still, pure BDDs and plain SAT solver cannot handle all cones

B BDDs can be built for about 80% of the cones of high-speed
designs

B |ess for complex ASICs
B plain SAT blows up on a “miter” structure

O Contemporary method highly exploit structural similarity of
designs to be compared
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[0 Basic methods:
B random simulation, good for finding mis-compares
B BDD-based with modifications
B structural SAT-based with modifications

Miter structure

« — ) ) S
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Combinational EC

Combinational EC

I I
O Memory statistics of BDD-based EC on a PowerPC processor O Runtime statistics of BDD-based EC on a PowerPC
design processor design
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Combinational EC Structure and Verification
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Constrained EC

Cutpoint-Based EC

« constrain input space to ¢ = (v = y+z)

o . e , O Cutpoints are used to partition the miter
Non-occurring input values (don’t cares)
B Unreachable states
B Candidate for R
1. Input Mapping:  x D_ 07
" : D — D
\ — 0?
- 07
—D
Vi
2. Output Masking: X
D_ - 07? f,
Cutpoint guessing:
f2 V, « Compute net signature with random
simulator
« Sort signatures + select cutpoints
Characteristic function for constraint * Verify and refine cutpoints iteratively
17 « Verify outputs 18
Cutpoint-Based EC Cutpoint-Based EC
. A . B Testable for s-a-0 or s-a-1?
[0 False negatives O Permissible cutpoints A
B Outputs may miscompare for invalid cutpoint values u Apply ATPG: |
Y 00 10 11 01 Otest for s-a-0 at output -
X "0 1 Constraint: checks for permissible
o1 1 c=(v=y+2) functions X
Y 1111 |1 vz 00101101 Otest for s-a-1 at output |
z out woj1j1] |1 00|11 checks for inverse
D X 01 permissible functions
Yz o ool mjijajtja B Merge permissible .
o1 10 SE cutpoints successively
ml1l1] |1 from inputs to outputs 4>
1011 |1

« if viin SUPPORT(out), then out = compose(out, v, f,) 19
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Sequential EC

O If combinational verification paradigm fails (e.g.
we have no name matching)
O Two options:
B Run general sequential verification based on
state traversal
OVery expensive but most general
M Try to match registers automatically
OStructural register correspondence
OFunctional register correspondence
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Register Correspondence

O Find registers in product machine that implement identical
or complemented function

B These are matching registers in the two FSMs under
comparison
B BUT: might be more, we may have redundant registers

O Definition: A register correspondence RC c sxs is an
equivalence relation in the set of registers s
B Can be extended to also include complemented functions
B A register correspondence can be used as a

rs)= [ (s'=9) RCcCsxs

v(s',s))eRC
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Register Correspondence

O Algorithm REGISTER_CORRESPONDENCE {
RC” = {(s',s)) | sy = sy}
//start with registers with identical initial values

do {
RC = RC”
r(s) = Iycsi,sjyerc (Si_ E_Sj) . .
RC” = {(s',sd) | (s',89)eRC A 3'(X,8)=3I(X,S) A r(s)}

//8" is the transition function of st
} while (RC” != RC)
return RC

}

O In essence
B The algorithm starts with an initial partitioning with two equivalence classes, one
for each initial value
B The algorithm computes iteratively the next-state function, assuming that the RC
is correct
O if yes, fixed point is reached and RC returned
O if no, split equivalence classes along the mis-compares
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Register Correspondence

Instead of using

D Example constraint, use

fresh variable for

’ {>0 each class
hm#m%w
1 1 1

De

Result:
{st,s%
{52133,55}




Register Correspondence

CPotential problems:

M In case of mis-comparing designs
OEffect of mis-compared cone may ripple through
entire algorithm and split all equivalence classes until
they contain only single registers
ODifficult to debug since no hint of error location
OSolution:
= Relax equivalence criteria

= E.g. structural register correspondence algorithm
based on support set of registers

= Combine with name mapping, functional/structural
criteria
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Sequential EC

O In case that combinational EC model fails:

B Use generalized register correspondence to
also consider retiming

OlIn essence, use all internal nets as candidates for
possible matches

0 Worst case: general sequential verification

B Prove that the output of the product machine
is not satisfiable (sequentially)

B Special case of general property checking
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Sequential EC

O State traversal
® Forward
O Start from initial state(s)
O Traverse forward to check whether
"bad" state(s) is reachable
B Backward
O Start from bad state(s)
O Traverse backward to check whether
initial state(s) can reach them
® Hybrid
O Compute over-approximation of
reachable states by forward traversal
O For all bad states in over-
approximation, start backward

traversal to see whether initial state
can reach them

Sequential EC

O Transition relation

0 otherwise
t(s,s)=3IX(s'=5(x,5))

(5,59 = {1 if there is a transition from s to s'

O Example
X s 8(x,8) s' s'=0(x55) t(s,8)=IIx(s'=5(X,5))
00 1 0 0 0
10 1 o0 0 0 *0
X=1
01 0 o0 1 1 %@/\\/@@
11 1 0 0 1 0,1
00 1 1 1 1
10 1 1 1 1
01 0 1 0 1 I
11 1 1 1 1
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Sequential EC

Sequential EC

i O Forward state traversal
O Image and pre-image of states Algorithm TRAVERSE_FORWARD(t, % ,S0) {
reached = &
current = SO // start from init
IMG(t,r) =3s.(r(s) at(s,s") PREIMG(t,r) =3s".(r(s") at(s,s")) while (reached # (reached v current)) { // fixed point
reached = reached v current // add new states
next = IMG(t,current) // one step transition
O Example current = next // rename variable
r(s) =(s=0)v(s=1) {0,1}
0 9 return 3Ix.(h(X,s) A reached)
N G 69 =E=0nE=2)v {02), ¥
A (s=0)A(s'=3) v 03), O Example
O & (s=1)A(s'=3)v (1.3),
(s=2)n(s'=4) (2,4)} o () ()
@ Reached: {0} {012} {01,2,3}
© e G SEe0Eeay (02 AN ; Current o w2 (2
S = A(S =
2/ Next: 1,2 12,3} {0123
(s=1)(s'=3) (L3) @@ . A
Is.(rat)=(s"=2) v (s'=3) {2,3} 0
Sequential EC Sequential EC
O Forward state traversal 101 1li 1
Algorithm TRAVERSE_BACKWARD(t, % ,SO) { D EXpIICIt reaChablllty a_'r_]aIySIS ) ) .
reached = @ B Represent states explicitly (e.g. as bit string) == limited
current = 3x.(L(x,s)=1) // start from bad capacity
while (reached # (reached v current)) { // fixed point . :
reached = reached v current 77 add new states B Use hashtable to find quickly whether state was reached
previous = PRE_IMG(t,current) // one step transition before
current = previous // rename variable B Image operation: simple simulation
return (SO  reached) B Preimage operation: SAT run
}
O Example O Symbolic reachability analysis
B Represent states and transition relation symbolically
Q OE.g. BDDs, circuits, DNF, etc.
Q—@ (4) Reached: {6} {4,6} {4,5,6} B Use BDD operations to perform image and preimage
\ Current: (6} 4 {4,5) operation (simple AND or AND_EXIST) _
e—@ 6 Previous: @ 45 {456} B |ots of heuristic improvements to keep BDD size under

31
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Sequential EC

O Let R(s) be the characteristic function of the set
of reachable states of the product FSM M,
obtained from forward reachability analysis. Then
FSMs M, and M, are equivalent if and only if

M.o(X,8) A R(S)
is constant O for all valuations on input variables
X and state variables s
B This can be checked in constant time for BDD
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Sequential EC

0 Example
B To check: The equivalence of M; and M,

o i o0

—
0/0 1/0

M1

So S1
n
i o0
oo A 01

0/0 1/0 M2
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Sequential EC

O Example (cont'd)
B Construct product FSM of M, and M,

0
M1

M2
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Sequential EC

O Example (cont’'d)

B Forward reachability analysis based on image
computation Img(C,T)=[3%,5T(%,5,5)AC(5)].,

36




Sequential EC

O Example (cont'd)

B Backward reachability analysis based on pre-image

computation Prelmg(C,T)=[3%,5'T(X,5,5)AC(5")], s

0/1

0/1

1/1
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Sequential EC

O Alternative approach beyond reachability analysis
B Based on state equivalence

OTwo FSMs are equivalent if and only if their initial states
are equivalent

= Two states of an FSM are equivalent if starting these two
states the FSM behaves indistinguishably

B Explicit algorithm (based on state transition graph
enumeration) is known

OUsed in state minimization where equivalent states must
be identified

B How about implicit algorithm (based on Boolean
manipulation) ?
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Sequential EC

[ State partitioning based sequential EC

B Construct and multiplexed FSM (disjoint union of the

state graphs)

OO0 Example

0/1
0/0 1/0
So S1
171
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Sequential EC

[0 State partitioning over multiplexed FSM
B Using BDD-based functional decomposition

YiV2

O Example (cont’'d)

00| 0 0 0 0

001 0 1 0 1




Sequential EC

[0 State partitioning based sequential EC

M BDD-based functional decomposition
OBound set variables (top): state variables
OFree set variables (bottom): others
OCutset: free-set nodes with incoming edges from
bound-set nodes
M Paths leading to a node in the cutset form an
equivalence class of states (for an iteration)

M Iterate functional decomposition over
composed functions

41

Sequential EC

OO Example (cont’'d)
B State partitioning

0/1
0/0

So
11

0/0 ©
0/0

11
1

1/0

S1

0/1 1/0
01 (| t2

1/0
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Sequential EC

0 Connection between reachability based
SEC and state partitioning based SEC

B Backward reachability analysis can be
considered as state partitioning in the product
state space
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Sequential EC

O Summary

B Industrial EC checkers almost exclusively use an
combinational EC paradigm even for sequential EC

OSequential EC is too complex and can only be applied to
design with a few hundred state bits

O Structure similarity should be identified to simplify

sequential EC

B Besides sequential equivalence checking, reachability
analysis is useful in sequential circuit optimization

ORecall in sequential optimization that unreachable states
can be used as sequential don’t cares to optimize a

sequential circuits

a4




Model Checking

Model Checking

A model checking problem is defined by OM[=¢ »
B Check if system model M satisfies a system property ¢
- B System model M is described with a state transition
more detailed M |: system
/ Ofinite state or infinite state
w P B Temporal property ¢ can be described with three
implementation orthogonal choices:
(system model) 1.operational vs. declarative:
2.may Vs. must:
3.prohibiting bad vs. desiring good behavior:
“satisfies”, “implements”, “refines”
(satisfaction relation) Different choices lead to different model checking
problems.
45 46
Property Checking Property Checking

O Assertion-based verification

B Properties are expressed as RTL annotations in terms or assertions
(“This statement must hold true”)

B E.g. AG(x=y) “For all paths from the initial state and all successor
states x=y”

O Formal verification methods:
B Exhaustive, do not require simulation vectors

O Main methods:

B Theorem proving

B Model Checking
O Liveness property checking
O Safety property checking

B Refinement checking

B Equivalence checking

B Bounded property checking

Expressivness
Capacity/
Degree of Automation

47

O Safety property: O Liveness property:
Something “bad” will never Something “good” will
happen eventually happen

B Safety property violation B Liveness property violation
always has a finite witness never has a finite witness
O if something bad happens O no matter what happens
on an infinite run, then it along a finite run,
happens already on some something good could still
finite prefix happen later
B Example B Example
O Two processes cannot be O Whenever process P1
in their critical sections wants to enter the critical
simultaneously section, provided process
P2 never stays in the
critical section forever, P1
gets to enter eventually

For finite state systems, liveness can be converted to safety!
48




Safety Property Checking

[0 Safety property checking can be
formulated as a reachability problem
B Are bad states reachable from good states?

[0 Sequential equivalence checking can be
considered as one kind of safety property
checking
B M : product machine

M ¢ : all states reachable from initial states has
output O

49

Safety Property Checking

O Concept:
B Counter example has finite length
B Specification in terms of “bad behavior” that should not happen
B E.g. specify a state with a bad property or a bad output condition
B Handles 95% of practical properties

O Basic approach:
B Express property as formula on state and inputs
B Single reachability analysis sufficient to decide about correctness

Property:
AG("overflow)

“The history buffer never overflows”

@ Bad state (overflow)

Initial state ©® Good state (no overflow)

50

Liveness Property Checking

O Concept:
B Counter example has infinite length
B Specification in terms of “good behavior” that should always happen
B E.g. AG(regq=>AF ack)

O Basic approach:
B Nested reachability analysis according to formula

M1 M2 Property:
req AG(req=> AF ack)

o o O—. g “A request from M1 will always

O/;d' ack Oid' be acknowledged by M2”

51

Model Checking

O Data structure evolution in model
checking
B State graph (late 70s-80s)
OProblem size ~104 states
B BDD (late 80s-90s) — symbolic model checking
OProblem size ~1020 states
OCritical resource: memory
B SAT (late 90s-) — bounded/unbounded model
checking
OGRASP, SATO, chaff, berkmin
OProblem size —10100 (?) states
OCritical resource: CPU time
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Bounded Model Checking

0 Bounded Model Checking (Biere, et al., TACAS
1999):

B Property checking method based on finite unfolding of
transition relation interleaved with checks of the
property

O Sound: in its pure form no false positives are possible
O Incomplete: cannot guarantee correctness of property

B Basic method:
O CNF-based:

= Use CNF-based SAT solver to represent unfolding and proof
UNSAT for correctness of property

OCircuit-based:
= Use ATPG-like reasoning to show untestability
OHybrid:
= Use circuit rewriting and SAT checking interleaved
= e.g. based on AND/INV graphs
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Bounded Model Checking

CONotation

B Variables for current and next state: s, s’

B Predicate for transition relation: t(s,s’)
Ot(s,s’)=1 iff there is a transition from s to s’

B Predicate for initial states: i(s)
Oi(s)=1 iff s is an initial state

M Predicate for property: p(s)
Op(s)=1 iff s satisfies property p

B Predicate for all paths of length k:

t4(S0,SK) = Iosick 1(Si:Siv1)

Otk(sy,s,)=1 iff there is a transition path of length k
from s, to s,

54

Bounded Model Checking

COBMC for length k
BMC, = i(S) A t(S0,5,) A —P(S))

CO0BMC loop
Algorithm BMC(max_length){
forall O < k < max_length do {
1T(SAT(BMC,)) return FAIL

}
return SUCCESS;

}

55

Bounded Model Checking

CO0BMC unfolding
B Time-frame expansion

I(SO) L_I':)-rl(so'sl)l‘_l':)fz(slisz)'-_l':) Qﬂ(si—l’si)?

—P —P P —P

* Any SAT technique can be used for checking frames
» Combination with random simulation, parallel runs etc.
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Unbounded Model Checking

O K-step induction [Sheeran, FMCAD 2000]
B Assert correctness of properties proven for previous frames

tp“(s,.s,) = A p(s,) At(s,.s,.,)

B Simple path constraint
O No state visited twice
K —
tpsimple(so‘s ) - Os/i\<k p(Si) /\t(si ‘Si+1) A Ogé\jgk 57 Sj
B K-step inductiveness
O In addition to BMC, check also

inv* =tp*(s,,s,) A —p(s,)

O Interpolation [McMillan, CAV 2003]

O SAT-based model checking without unrolling [Bradley,
VMCAI 2011]
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Model Checking

O Summary
B Temporal logic is a variation of mathematical logic and is
concerned with temporal reasoning
O Developed since 1970's

B Model checking is concerned with algorithmic verification
of temporal properties
ODeveloped since 1980’s

O Hardware model checking techniques are being applied in
the software domain

B Reference

OK. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, 1993

OM. Clarke, O. Grumberg, and D. Peled. Model Checking.
MIT Press, 1999
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