Switching Circuits & Logic Design

Jie-Hong Roland Jiang 江介宏

Department of Electrical Engineering National Taiwan University

Fall 2012

1

§3 Boolean Algebra (Continued)

Photo: http://supercolossal.ch/2008/09/page/2/

Outline

- Multiplying out and factoring expressions
- Exclusive-OR and equivalence operations
- ■The consensus theorem
- ■Algebraic simplification of switching expressions
- Proving validity of an equation

3

Multiplying Out and Factoring Expressions

■ Besides the distributive laws

$$X(Y+Z) = XY+XZ$$
 and $(X+Y)(X+Z) = X+YZ$, a useful theorem:

$$(X+Y)(X'+Z) = XZ+X'Y$$

■ YZ (=XYZ+X'YZ) can be removed as XYZ+XZ = XZ(Y+1) = XZ and

$$X'YZ + X'Y = X'Y(Z+1) = X'Y$$

(c.f. the consensus theorem)

Ex1.
$$(AB+A'C) = (A+C)(A'+B)$$

Ex2.
$$(Q+AB')(C'D+Q') = QC'D+Q'AB'$$

Multiplying Out and Factoring Expressions

■Example (multiplying out)

$$(\underline{A+B}+C')(\underline{A+B}+D)(A+B+E)(A'+\underline{D'+E})(A'+C')$$

$$= (\underline{A+B}+C'D)(\underline{A+B}+E)[AC+A'(D'+E)]$$

$$= (\underline{A+B}+C'DE)(AC+A'D'+A'E)$$

$$= AC+ABC+A'BD'+A'BE+A'C'DE$$
Why?

Without simplification, there are 162 terms after multiplying out!

5

Multiplying Out and Factoring Expressions

■ Example (factoring)

```
AC+A'BD'+A'BE+A'C'DE

= AC+A'(BD'+BE+C'DE)

XZ X' Y

= (A+BD'+BE+C'DE)(A'+C)

= [A+C'DE+B(D'+E)](A'+C)

X Y Z

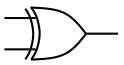
= (A+B+C'DE)(A+C'DE+D'+E)(A'+C)

= (A+B+C') (A+B+D) (A+B+E) (A+D'+E)(A'+C)
```

Exclusive-OR and Equivalence Operations

■XOR (exclusive-OR)

- Notation: "⊕", "≢"
- Logic gate symbol:



$$\begin{cases}
0 \oplus 0 = 0 \\
0 \oplus 1 = 1 \\
1 \oplus 0 = 1 \\
1 \oplus 1 = 0
\end{cases}$$

$$X \longrightarrow Z = X \oplus Y$$
 $XOR\text{-gate}$

XY	$Z = X \oplus Y$
00	0
01	1
10	1
11	0

7

Exclusive-OR and Equivalence Operations

$$\square$$
 $X \oplus Y = X'Y + XY' = (X+Y)(X'+Y')$

Properties:

- $X \oplus O = X$
- X ⊕ 1 = X'
- X ⊕ X = 0
- X ⊕ X' = 1
- \blacksquare X \oplus Y = Y \oplus X (commutative law)
- $(X \oplus Y) \oplus Z = X \oplus (Y \oplus Z) = X \oplus Y \oplus Z$ (associative law)
- $X (Y \oplus Z) = XY \oplus XZ$ (distributive law)
- (X ⊕ Y)' = X ⊕ Y' = X' ⊕ Y = XY+X'Y'
 Proof by truth table or by the equalities X⊕Y = X'Y+XY'= (X+Y)(X'+Y')

Exclusive-OR and Equivalence Operations

- Exercise
 - $(X \oplus Y) \oplus Z = X \oplus (Y \oplus Z)$ (associative law)

LHS =
$$(X \oplus Y)Z' + (X \oplus Y)'Z = (X'Y + XY')Z' + (XY + X'Y')Z = X'(YZ' + Y'Z') + X(YZ + Y'Z') = X'(Y \oplus Z) + X(Y \oplus Z)' = RHS$$

 $F = (X \oplus Y \oplus Z)$ is a parity function (i.e., F=1 iff the truth assignments on (X,Y,Z) have odd number of 1's)

■ X(Y⊕Z) = XY⊕XZ (distributive law)
□RHS = (XY)(XZ)'+(XY)'(XZ) = (XY)(X'+Z')+(X'+Y')(XZ) = XYZ'+XY'Z = X(YZ'+Y'Z) = LHS

Note that $X \oplus (YZ) \neq (X \oplus Y)(X \oplus Z)$

9

Exclusive-OR and Equivalence Operations

- ■XNOR (exclusive-NOR, equivalence)
 - Notation: "≡", "⊕"
 - Logic gate symbol:

$$\begin{cases}
0 \equiv 0 = 1 \\
0 \equiv 1 = 0 \\
1 \equiv 0 = 0 \\
1 \equiv 1 = 1
\end{cases}$$

$$X$$
 Y
 $Z = X \equiv Y$
XNOR-gate

XY	$Z = X \equiv Y$
00	1
01	0
10	0
11	1

Exclusive-OR and Equivalence Operations

$$\square X \equiv Y = XY + X'Y' = (X' + Y)(X + Y') = (X \oplus Y)'$$

Simplify
$$F = (A'B \equiv C) + (B \oplus AC')$$

 $F = (A'B)C + (A'B)'C' + B'(AC') + B(AC')'$
 $= A'BC + (A+B')C' + AB'C' + B(A'+C)$
 $= B(A'C+A'+C) + C'(A+B'+AB')$
 $= B(A'+C) + C'(A+B')$

11

Exclusive-OR and Equivalence Operations

□ Useful equality (X'Y+XY')' = XY+X'Y'

Simplify
$$F = A' \oplus B \oplus C$$

$$F = [A'B' + (A')'B] \oplus C$$

$$= (A'B' + AB)C' + (A'B' + AB)'C$$

$$= (A'B' + AB)C' + (A'B + AB')C$$

$$= A'B'C' + ABC' + A'BC + AB'C$$

Consensus Theorem

☐ The consensus theorem:

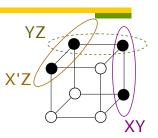
$$XY + X'Z + YZ = XY + X'Z$$

Proof.

$$YZ (=XYZ+X'YZ)$$
 can be removed as

$$XYZ + XY = XY(Z+1) = XY$$
 and

$$X'YZ + X'Z = X'Z(Y+1) = X'Z$$



- YZ is called the consensus of XY and X'Z
- Removing (redundant) consensus terms can simplify Boolean expressions

13

Consensus Theorem

Example

= a'b' + ac + bc'

Given a Boolean expression, e.g., F = a'bc+acd'+bcd'e,

- 1. search a pair of product terms p₁ (a'bc) and p₂ (acd') with complementary literals of the same variable x (a)
- 2. build their consensus (bcd') by ANDing p₁ (a'bc) and p₂ (acd') with their literals of variable x (a) removed
- 3. remove the terms (bcd'e) of F that are covered (in the sense of solution space) by the consensus (bcd')

(since bcd' + bcd'e = bcd'(1+e) = bcd')

Consensus Theorem

■The dual of the consensus theorem:

$$(X+Y)(X'+Z)(Y+Z) = (X+Y)(X'+Z)$$

Proof.

$$Y+Z = (X+Y+Z)(X'+Y+Z)$$
 can be removed as $(X+Y+Z)(X+Y) = (X+Y)(Z+1) = (X+Y)$ and $(X'+Y+Z)(X'+Z) = (X'+Z)(Y+1) = (X'+Z)$

- (Y+Z) is called the consensus (more accurately, resolvent) of (X+Y) and (X'+Z)
- Removing the (redundant) consensus terms can simplify Boolean expressions

15

Consensus Theorem

Example

$$(a+b+c')(a+b+d')(b+c+d')$$

= $(a+b+c')(b+c+d')$

$$(a+b+c')(a+b+d'+e)(b+c+d')$$

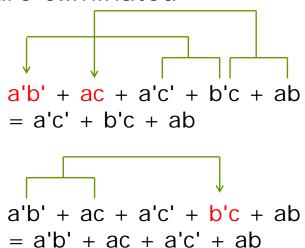
= $(a+b+c')(b+c+d')$

The clause (a+b+d'+e) can be removed since it **covers** (in the sense of solution space) the consensus of (a+b+c') and (b+c+d')

$$(a+b+d')(a+b+d'+e) = (a+b+d')(1+e) = (a+b+d')$$

Consensus Theorem

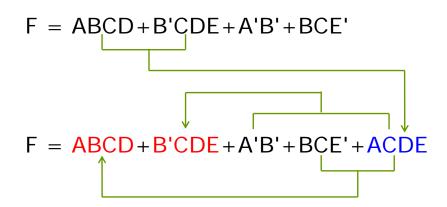
☐ Simplification by the consensus theorem may depend on the order in which terms are eliminated



17

Consensus Theorem

■ Sometimes adding a consensus term may further reduce a Boolean expression



Algebraic Simplification of Switching Expressions

- Simplifying an expression reduces the cost of realizing the expression using gates
 - Simplification methods:
 - Multiplying out and factoring
 - Algebraic methods
 - 1. Combining terms
 - 2. Eliminating terms
 - 3. Eliminating literals
 - 4. Adding redundant terms
 - Graphical methods (Unit 5: Karnaugh maps)

19

Algebraic Simplification Combining Terms

□ Algebraic Method 1: Combining terms by XY+XY'=X

E.g.,

$$ab'c+abc+a'bc = \underline{ab'c+abc}+\underline{abc+a'bc} = ac+bc$$

$$(a+bc)(d+e')+a'(b'+c')(d+e') = d+e'$$

Algebraic Simplification Eliminating Terms

□ Algebraic Method 2: Eliminating terms by X+XY=X and by the consensus theorem XY+X'Z+YZ=XY+X'Z

```
E.g.,

a'b+a'bc = a'b

a'bc'+bcd+a'bd = a'bc'+bcd
```

21

Algebraic Simplification Eliminating Literals

□ Algebraic Method 3: Eliminating literals by X+X'Y=X+Y

```
E.g.,

A'B+A'B'C'D'+ABCD'

= A'(B+B'C'D')+ABCD'

= A'(B+C'D')+ABCD'

= B(A'+ACD')+A'C'D'

= B(A'+CD')+A'C'D'

= A'B+BCD'+A'C'D'
```

Algebraic Simplification Adding Redundant Terms

■ Algebraic Method 4:

Adding redundant terms, e.g., adding xx', multiplying (x+x'), adding yz to xy+x'z, adding xy to x.

```
E.g.,  WX + XY + X'Z' + WY'Z' \qquad \text{(add } WZ' \text{ by consensus thm)}   = WX + XY + X'Z' + WY'Z' + WZ' \qquad \text{(eliminate } WY'Z')   = WX + XY + X'Z' + WZ' \qquad \text{(eliminate } WZ')   = WX + XY + X'Z'
```

23

Algebraic Simplification of Switching Expressions

Exercise (p.69)

A'B'C'D'+A'BC'D'+A'BD+A'BC'D+ABCD+A CD'+B'CD' = A'C'D'+BD (A'+AC) +ACD'+B'CD' = A'C'D'+A'BD+BCD+ACD'+B'CD' = A'C'D'+A'BD+BCD+ACD'+B'CD'+ABC = A'C'D'+A'BD+B'CD'+ABC

Algebraic Simplification of Switching Expressions

■To simplify POS expressions, the duals of the previous four algebraic methods can be applied

Exercise (p.70)

$$\frac{(A'+B'+C')(A'+B'+C)}{(A'+B')(A+C)}(B'+C)(A+C)(A+B+C)$$
= $(A'+B')(B'+C)(A+C)$
= $(A'+B')(A+C)$

25

Algebraic Simplification of Switching Expressions

- ■No easy way of determinizing when a Boolean expression has a minimum number of terms or a minimum number of literals
- Systematic methods for finding minimum SOP and POS expressions will be discussed in Units 5 and 6

Proving Validity of an Equation

- □ A Boolean expression is valid (satisfiable) if it is true under every (some) truth assignment of the variables
 - Validity/satisfiability checking is one of the central problems in computer science
- □ The equation F = G is valid if and only if (iff) the expression (F = G) is valid
- □ To prove equation F = G is not valid, it is sufficient to find a truth assignment of the variables that makes F and G produce different values

```
E.g., X \oplus (YZ) \neq (X \oplus Y)(X \oplus Z) under (X,Y,Z) = (1,0,1)
```

27

Proving Validity of an Equation

- ☐ Given an equation F = G, its validity can be determined by the following methods:
 - 1. Prove by the truth table
 - 2. Rewrite one side of the equation by applying various theorems until it is identical with the other side
 - 3. Rewrite both sides to the same expression
 - a) Rewrite every side independently
 - b) Perform the same **reversible** operation on both sides E.g.,

complement both sides (reversible)
multiply both sides with the same expression (irreversible)
add the same term to both sides (irreversible)

If F=G, then aF=aG and b+F=b+G for arbitrary a, b The converse is not true

Why?

Proving Validity of an Equation

- When methods 2 and 3 above are used, the following steps can be useful
 - 1. First reduce both sides to SOP
 - 2. Compare the difference between both sides
 - 3. Add terms to one side of the equation that are present on the other side
 - 4. Finally eliminate terms from one side that are not present on the other side

29

Proving Validity of an Equation

Example

Show that
$$A'BD'+BCD+ABC'+AB'D = BC'D'+AD+A'BC$$

$$= A'BD' + BCD + ABC' + AB'D + BC'D' + A'BC + ABD$$

$$= \underline{\underline{AD}} + \underline{\underline{A'BD'}} + \underline{\underline{BCD}} + \underline{\underline{ABC'}} + \underline{\underline{BC'D'}} + \underline{\underline{A'BC}}$$

$$= BC'D' + AD + A'BC$$

Proving Validity of an Equation

Example

```
Show that A'BC'D+(A'+BC)(A+C'D')+BC'D+A'BC' = ABCD+A'C'D'+ABD+ABCD'+BC'D
```

LHS

$$A'BC'D+(A'+BC)(A+C'D')+BC'D+A'BC'$$

- = (A'+BC)(A+C'D')+BC'D+A'BC'
- = ABC + A'C'D' + BC'D + A'BC'
- = ABC + A'C'D' + BC'D

RHS

ABCD+A'C'D'+ABD+ABCD'+BC'D

- = ABC + A'C'D' + ABD + BC'D
- = ABC + A'C'D' + BC'D

What rules are used?

31

Boolean Algebra vs. Ordinary Algebra

- □Some theorems of Boolean algebra (BA) are not true for ordinary algebra (OA), and vice versa
 - E.g.,

Cancellation law for OA (not for BA):

If
$$x+y=x+z$$
, then $y=z$
(counterexample for BA: $x=1,y=0,z=1$)

```
If xy=xz for x\neq 0, then y=z
(counterexample for BA: x=0, y=0, z=1)
```

Boolean Algebra vs. Ordinary Algebra

☐ The converse is true for BA:

```
If y=z, then x+y=x+z
```

If y=z, then xy=xz

Why?

33

Proving Validity of an Equation

■ More exercises in p.73-78