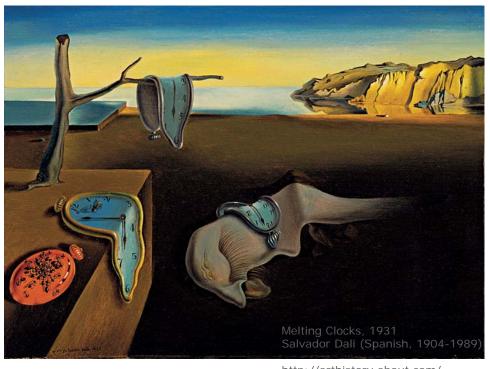
Switching Circuits & Logic Design

Jie-Hong Roland Jiang 江介宏


Department of Electrical Engineering National Taiwan University

Fall 2012

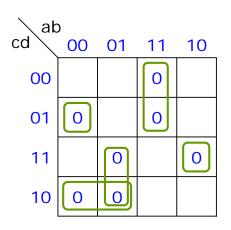
1

§8 Combinational Circuit Design and Simulation Using Gates

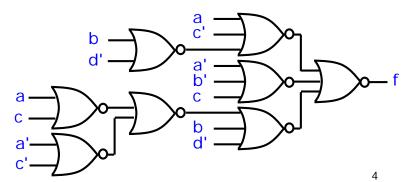
http://arthistory.about.com/

Outline

- ■Gate delays and timing diagrams
- □ Hazards in combinational logic
- ■Simulation and testing of logic circuits

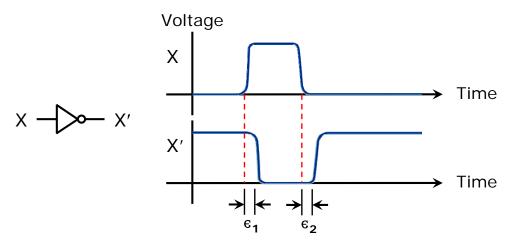

3

Design of Circuits with Limited Gate Fan-in


☐ If a 2-level realization of a circuit requires more gate inputs than allowed, factoring the logic expression to obtain a multi-level realization may be necessary

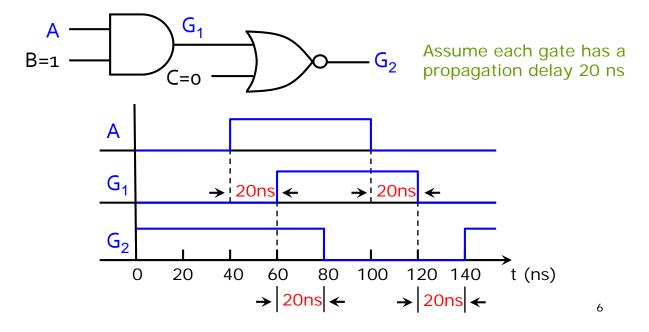
Example

■ Realize $f(a,b,c,d) = \sum m(0,3,4,5,8,9,10,14,15)$ using 3-input NOR gates



$$f' = b'd(a'c'+ac)+a'c(b+d')+abc'$$

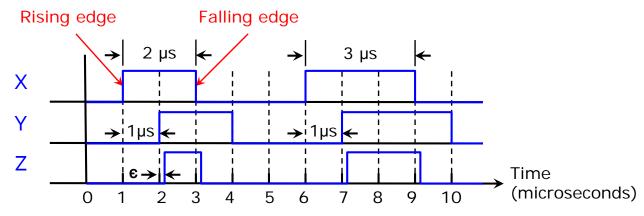
 $f = [b+d'+(a+c)(a'+c')][a+c'+b'd][a'+b'+c]$


Gate Delays and Timing Diagrams Gate Delays

- □ The output of a logic gate takes a finite time (propagation delay) to react to an input change
 - Propagation delays for IC gates are typically in a few nanoseconds (ns = 10⁻⁹ sec)
 - Propagation delays for 0→1 and 1→0 output changes may be different

Gate Delays and Timing Diagrams Timing Diagrams

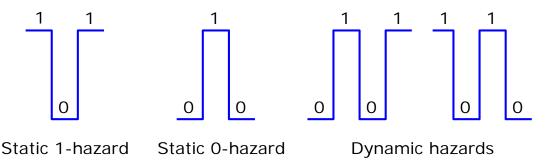
□ A timing diagram shows various signals in the circuit as a function of time


5

Gate Delays and Timing Diagrams Timing Diagrams

Circuit with a delay element

Assume AND-gate has a propagation delay ε μs


7

Hazards in Combinational Circuits

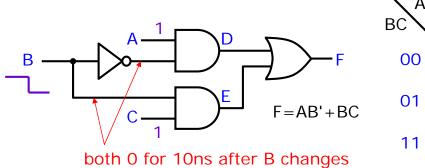
- When the input to a combinational circuit changes, unwanted switching transients (hazards) may appear in the output
 - These transients occur when different paths from input to output have different propagation delays
- □ Hazards are undesirable
 - They consume power/energy
 - They may result in function errors in certain circuit design styles (e.g., domino logic)
 - They may slow down the performance of sequential circuits

Hazards in Combinational Circuits Types of Hazards

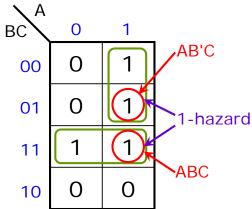
- **Static 1-hazard**: a circuit output may momentarily go to 0 when it should remain a constant 1
- **Static O-hazard**: a circuit output may momentarily go to 1 when it should remain a constant 0
- Dynamic hazard: a circuit output may change 3 or more times when it should change from 0 to 1 (or 1 to 0)

The steady-state output of the circuit is correct, but a switching transient appears at the output when the input is changed

9

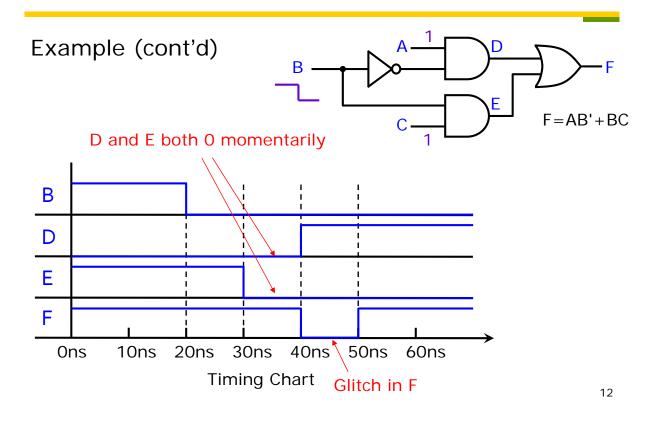

Hazards in Combinational Circuits Hazards in 2-level Circuits

- □ Hazards of 2-level AND-OR (OR-AND) circuits can be detected using K-maps and removed by adding terms (clauses)
 - Static 1-hazard can appear in 2-level AND-OR circuits
 - Static 0-hazard can appear in 2-level OR-AND circuits


Hazards in Combinational Circuits Static 1-Hazard

Example

- □ Letting A = C = 1 and B from 1 to 0 results in a static 1-hazard (F = B+B' with delayed inversion)
 - As seen from the K-map, no loop covers both minterms ABC and AB'C

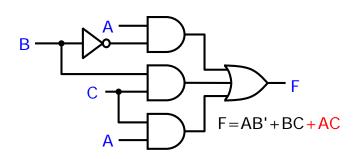


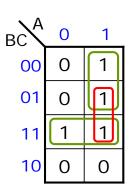
(assume propagation delay 10ns for all gates)

11

Hazards in Combinational Circuits Static 1-Hazard

Hazards in Combinational Circuits Hazard Detection and Removal

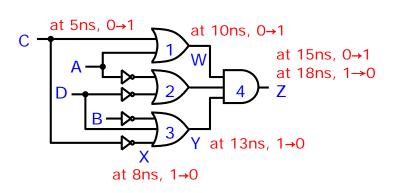

- Hazard detection procedure for 2-level AND-OR circuits
 - 1. Derive SOP expression of the circuit
 - 2. Plot each product term on K-map and loop it
 - If any two adjacent 1's are not covered by the same loop, a 1-hazard exists for the transition between these two 1's
 - ☐ For an n-variable map, this transition occurs when one variable changes and the other n-1 variables are held constant (due to adjacent 1's)
- Hazard removal for 2-level AND-OR circuits
 - Add a loop to the map covering such adjacent 1's, and then add the corresponding gate to the circuit

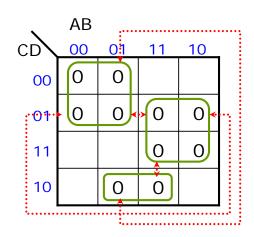

13

Hazards in Combinational Circuits Hazard Detection and Removal

Example (cont'd)

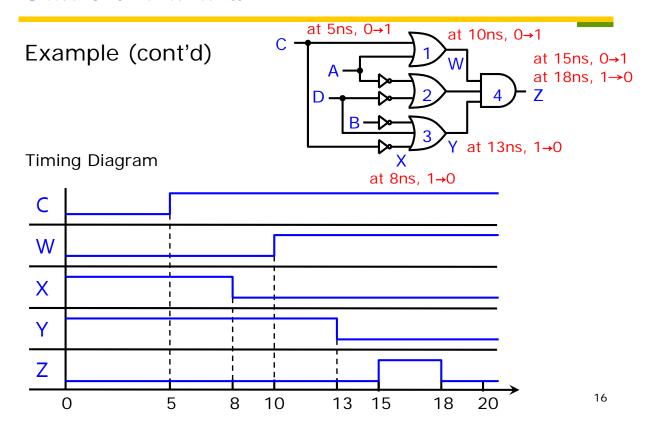
- Circuit with hazard removed
 - The new added product term AC keeps on 1 (for A=C=1) when B changes from 1 to 0




Hazards in Combinational Circuits Static 0-Hazard

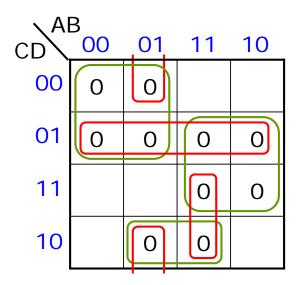
Example

Letting A=0, B=1, D=0, and C from 0 to 1 results in a static 0-hazard (Z = C⋅C' with delayed inversion)



(assume 3ns delay for inverters and 5ns for AND/OR gates)

15


Hazards in Combinational Circuits Static 0-Hazard

Hazards in Combinational Circuits Static 0-Hazard

Example (cont'd)

■ Eliminate the 0-hazards by adding 3 additional loops Z = (A+C)(A'+D')(B'+C'+D)(C+D')(A+B'+D)(A'+B'+C')

17

Hazards in Combinational Circuits Hazard-Free Circuit Design

- Procedure for the design of circuits free of static and dynamic hazards
 - Find an SOP expression F^t for the output in which every pair of adjacent 1's is covered by a 1-term. (The sum of all prime implicants will always satisfy this condition.) A two-level AND-OR circuit based on this F^t will be free of 1-, 0-, and dynamic hazards
 - Alternatively can start with a POS expression in which every pair of adjacent 0's is covered by a 0-term, and follow the dual procedure to design a hazard-free twolevel OR-AND circuit
 - 2. If a different form of the circuit is desired, manipulate F^t to the desired form by simple factoring, DeMorgan's laws, etc. Treat each x_i and x_i' as independent variables to prevent introduction of hazards

Hazards in Combinational Circuits

■ Under what condition can static 0-hazard (1-hazard) appear in 2-level AND-OR (OR-AND) circuits?

19

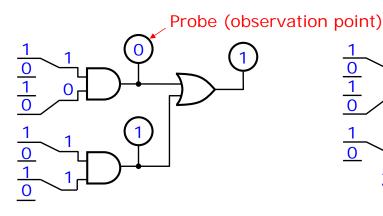
Verification of Logic Circuits

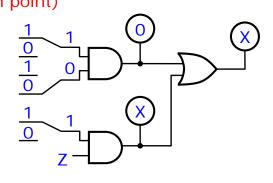
- □ Verification may take 70% of an entire circuit design time!
 - Verification methodologies:
 - Formal verification
 - Mathematical proof of design correctness
 - Informal verification
 - Error identification by simulation (focus of textbook)
 - Verification objectives:
 - Functional verification
 - for logical correctness
 - Timing verification
 - for timing correctness

Testing

- for quality control of fabricated ICs (focus of textbook)
- simulation of faulty components in the circuit as an aid to finding tests for the circuit

Simulation and Testing of Logic Circuits


- Logic circuits can be verified by actually building them or by simulating them on computers
 - Simulation is easier, faster, and more economical
 - Computer simulation involves specifying a circuit, specifying its inputs, and observing its outputs


21

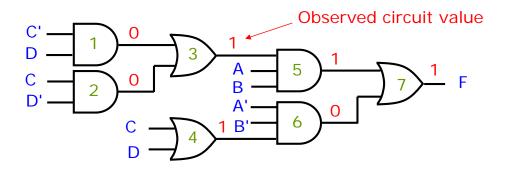
Simulation and Testing of Logic Circuits Simulation Procedure

- Simulation procedure for combinational circuits:
 - Valuations are performed level by level (from inputs to outputs); changes are updated from gate inputs to gate outputs
 - 0,1,X,Z four-valued simulation
 - X: unknown value (different from don't cares!)
 - Z: open circuit or high impedance (hi-Z)
 - Step 1 is repeated until no more changes. The circuit is then in steady-state condition, and the outputs can be read
 - 3. Steps 1-2 are repeated every time a circuit input changes

Simulation and Testing of Logic Circuits Four-Valued Logic Simulation

AND	•	0	1	Χ	Z
	0	0	0	0	0
	1	0	1	Χ	X
	Χ	0	Χ	Χ	Χ
AND	Z	0	Χ	X	Χ

23


Simulation and Testing of Logic Circuits Error Causes

- ■Possible causes of wrong outputs for some set of input values, e.g.,
 - In simulation
 - ■Incorrect design
 - ■Gates connected wrong
 - □Wrong input signals to the circuit
 - In fabricated circuit (built in lab)
 - ■Defective gates
 - □ Defective connecting wires

Simulation and Testing of Logic Circuits Locating Errors

Example

- Locate the error for the circuit with function F = AB(C'D+CD')+A'B'(C+D). Assume it, after built in lab, has an incorrect output equal to 1 when A=B=C=D=1
 - By locating errors from the output to inputs, the inconsistency between the inputs and output of gate 3 is identified.
 - Inputs to gate 3 can be connected wrong, gate 3 is defective, or input connections to gate 3 can be defective

25