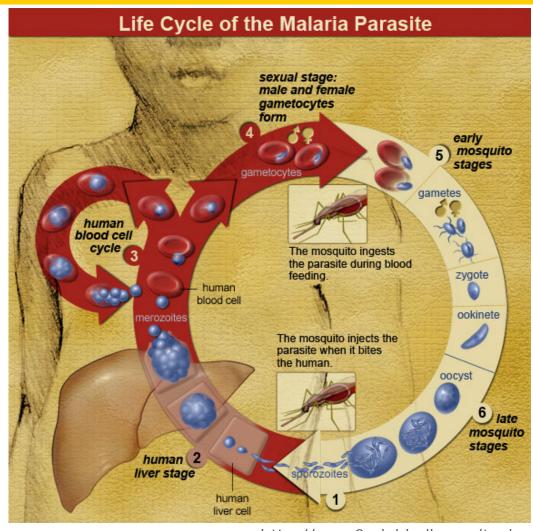
# Switching Circuits & Logic Design


Jie-Hong Roland Jiang 江介宏

Department of Electrical Engineering National Taiwan University



Fall 2012

## §11 Latches and Flip-Flops

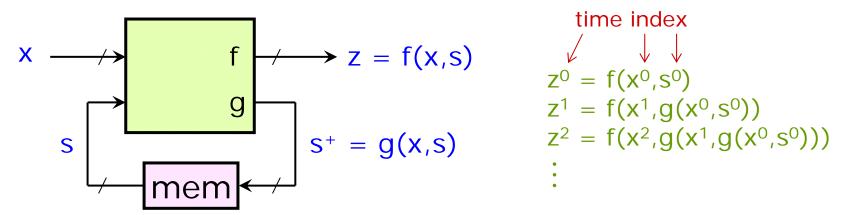


http://www3.niaid.nih.gov/topics/Malaria/lifecycle.htm

#### Outline

- Introduction
- ■Set-reset latch
- ☐Gated D latch
- □ Edge-triggered D flip-flop
- ■S-R flip-flop
- □J-K flip-flop
- □T flip-flop
- □ Flip-flops with additional inputs
- ■Summary

#### Introduction


- Combinational circuits
  - Output is a function depending on the present input, but not past inputs
    - ☐ Given an arbitrary input, a combinational circuit produces only one possible output (after certain delay)
  - Not necessarily acyclic (without feedback)
- Sequential circuits
  - Output is a function depending on the past sequence of inputs
  - Must be cyclic (with feedback)
    - **□** Synchronous sequential circuits
      - With memory devices (registers, latches)
    - □ **Asynchronous** sequential circuits
      - Without memory devices

#### Introduction

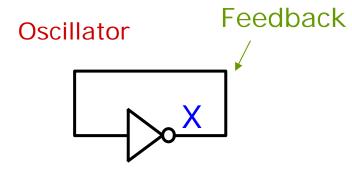
Combinational circuits (without memory)



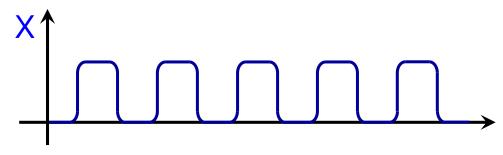
■ Sequential circuits (with memory)



#### Introduction


- ■To construct a system (e.g., circuit, neural network, etc.) that "remembers" something about the past history of the inputs
  - Need feedback!
    - Closed loops formed in a circuit connection

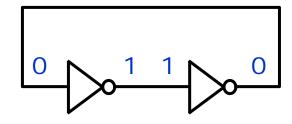
## Introduction Memory devices

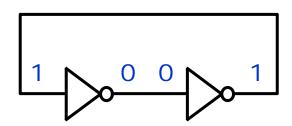

- Memory devices
  - Latches and flip-flops can assume one of two stable output states, and have one or more inputs that can cause the output state to change
    - Latch
      - Have no clock input
    - □Flip-flip
      - Change output state in response to a clock input, but not a data input

### Introduction Feedback

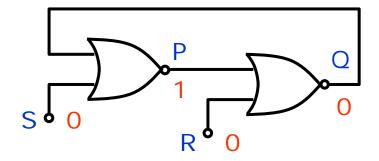
Unstable



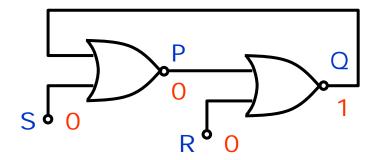

Inverter with feedback



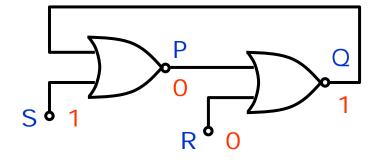

Oscillation at inverter output


Stable

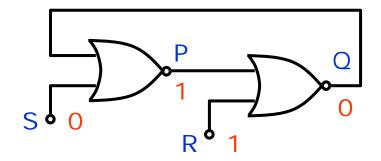
Memory (1-bit)





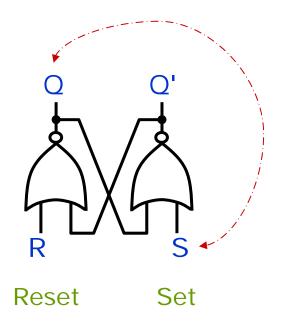


#### ■S-R latch



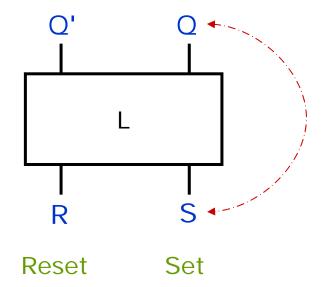

(a) Stable: Q=0



(a) Stable: Q=1

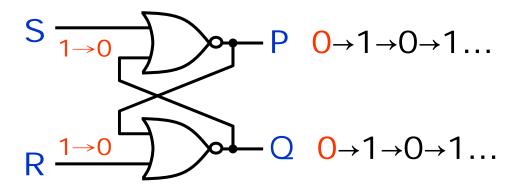



(b) Set: S:  $0\rightarrow 1 \Rightarrow Q: 0\rightarrow 1$ 

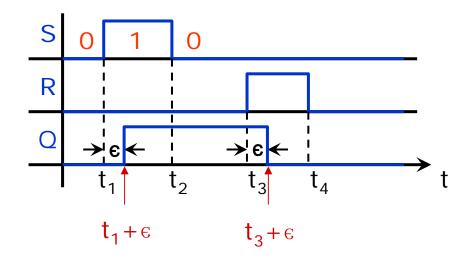


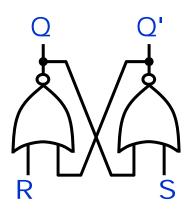

(b) Reset: R:  $0\rightarrow 1 \Rightarrow Q: 1\rightarrow 0$ 

Cross-coupled form




■ S-R latch symbol





Q directly above S (different from the cross-coupled form)

- ■Improper S-R latch operation
  - When S = R = 1, the circuit is unstable
  - Disallow S = R = 1 for S-R latch



#### ■Timing diagram





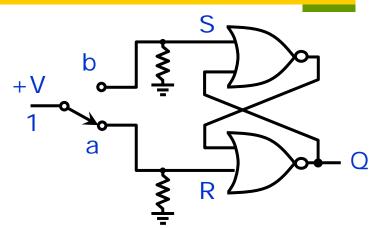
ε: two NOR-gate delay

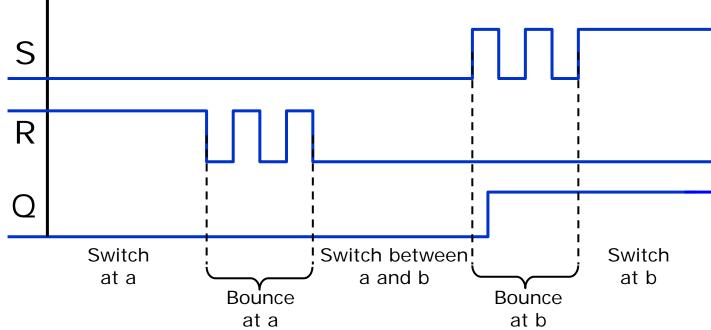
The duration of the S (or R) input pulse must normally be no less than  $\epsilon$  in order for a change in the state of Q to occur

## Set-Reset Latch Operation

■ Next-state equation (or characteristic equation):

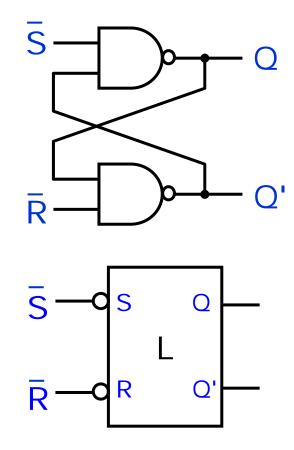
$$Q^+ = S + R'Q$$
 (SR=0, i.e., S=R=1 disallowed)


- Present (or current) state Q
  - ☐ The state of the Q output of the latch or flip-flop at the time the input signals are applied (or changed)
- Next state O<sup>+</sup>
  - ☐ The state of the Q output after the latch or flip-flop has reacted to these input signals


| S(t) R(t) Q(t) |   |   | Q(t+ε)                                                | S(t)                                  |
|----------------|---|---|-------------------------------------------------------|---------------------------------------|
| 0              | 0 | 0 | $\left\{\begin{array}{c}0\\1\end{array}\right\}$ hold | R(t) Q(t)                             |
| Ü              | O | I | ر ا                                                   | 00 0 1                                |
| 0              | 1 | O | 0 7                                                   | 01 1 1                                |
| 0              | 1 | 1 | o reset                                               | 11 0 ×                                |
| 1              | O | O | $\left\{\begin{array}{c}1\\1\end{array}\right\}$ set  |                                       |
| 1              | 0 | 1 | 1 5 361                                               | 10 0 ×                                |
| 1              | 1 | O | - ] probibitor                                        | d                                     |
| 1              | 1 | 1 | - } prohibited                                        | $Q(t+\varepsilon) = S(t) + R'(t)Q(t)$ |

## Set-Reset Latch Application

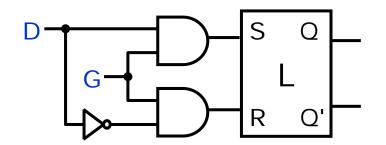
#### ■ Switch debouncing

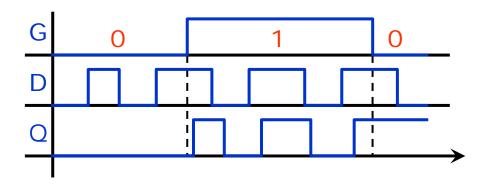

Note: only work for a double throw switch, switching between two contacts (but not for a single throw switch) why?



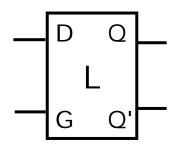


## Set-Reset Latch Alternative Implementation

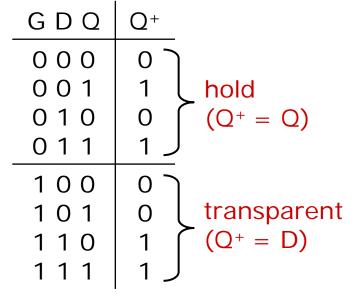

- □ S-R latch
  - S-R latch using NAND gates

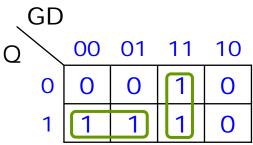



Inputs S and R are active low


## Gated D Latch

#### Gated D latch




#### Symbol



#### Truth table

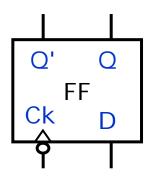




$$Q^+ = G'Q + GD$$

## Edge-Triggered D Flip-Flop

Unlike D latch, D flip-flip output changes only in response to the clock, not to a change in D


rising (or positive) edge triggered (0-to-1 transition on clock)

falling (or negative) edge triggered (1-to-0 transition on clock)



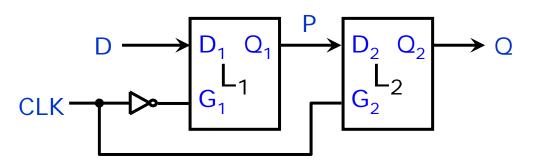
Rising-edge trigger





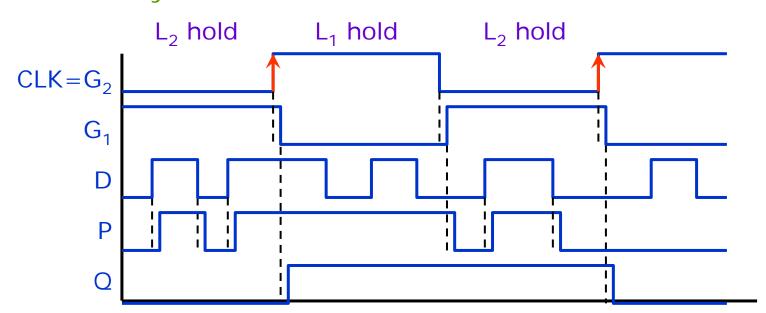
Falling-edge trigger

Truth table


## Edge-Triggered D Flip-Flop

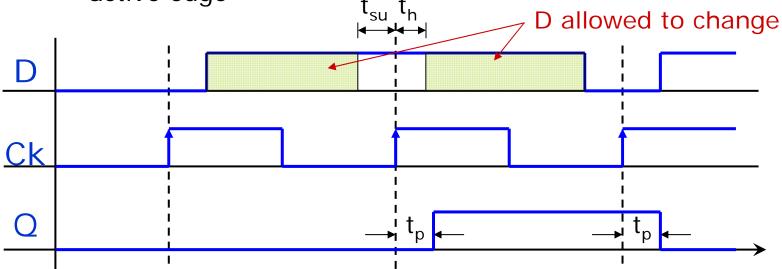
- ■Timing diagram
  - (falling-edge trigger)




## Edge-Triggered D Flip-Flop Implementation

- D flip-flop (rising-edge trigger)
  - Composed of two gated D latches




Time analysis

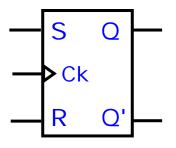
If L<sub>1</sub> starts following D before L<sub>2</sub> takes on P, the FF will not function properly



## Edge-Triggered D Flip-Flop Setup Time and Hold Time

- □ Propagation delay: t<sub>p</sub>
  - The time between the active edge of the clock and the resulting change in the output
- Setup time: t<sub>su</sub>
  - The amount of time D must be stable before the active edge
- □ Hold time: t<sub>h</sub>
  - The amount of time D must hold the same value after the active edge




## Edge-Triggered D Flip-Flop Determine Minimum Clock Period

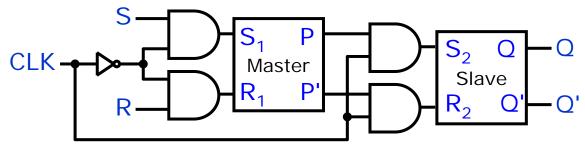
 $t_{su}$ Simple flip-flop circuit example CLK (t<sub>p</sub> 5ns, t<sub>su</sub> 3ns, inverter delay 2ns) 0 inv delay D Setup time not satisfied extra 5ns inv delay inv delay Minimum clock period 21 Setup time satisfied

## S-R Flip-Flop

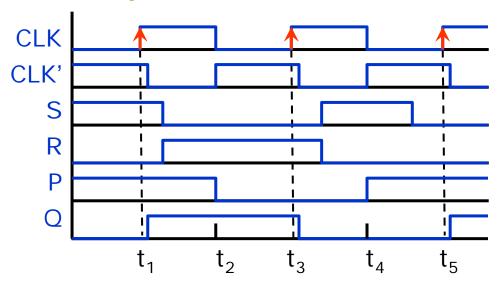
- ☐ Similar to S-R latch but with clock input
  - Same truth table and characteristic equation
  - Interpretation of Q+ is different
    - □ Latch: Q<sup>+</sup> is the value of Q after the propagation delay through the latch
    - ☐ FF: Q<sup>+</sup> is the value that Q assumes after the active clock edge

#### S-R flip-flop




Q changes at clock edges

#### Operation summary:


S=R=0 no state change S=1,R=0 set Q to 1 (after active Ck edge) S=0,R=1 reset Q to 0 (after active Ck edge) S=R=1 not allowed

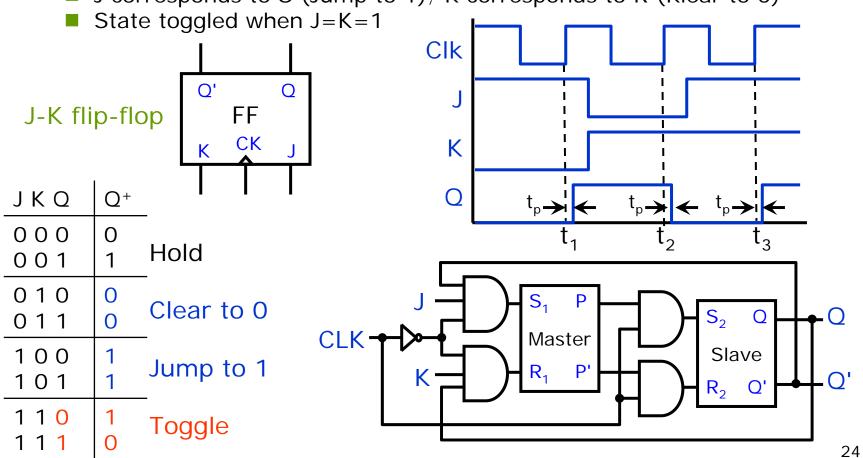
## S-R Flip-Flop Implementation

- □ S-R flip-flop (master-slave flip-flop)
  - Composed of two S-R latches
  - Only allow the S and R inputs to change while CLK is high

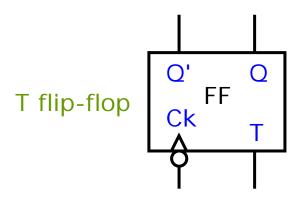


#### Time analysis

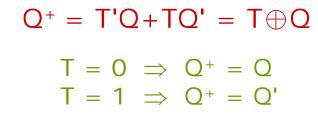


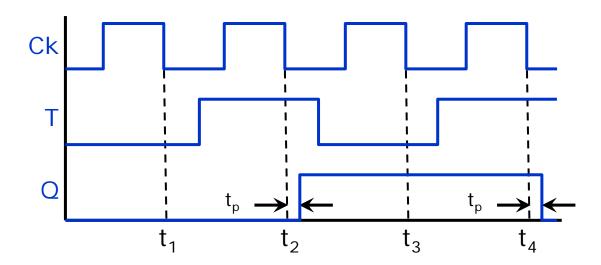

Rising-edge-triggered FF: Inputs can change while CLK is low

Master-slave FF: Incorrect if inputs change while CLK is low


## J-K Flip-Flop

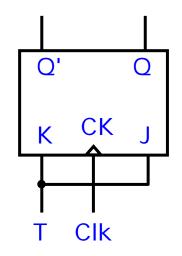
- □ J-K flip-flop is an extended version of S-R flip-flop.


J corresponds to S (Jump to 1); K corresponds to R (Klear to 0)



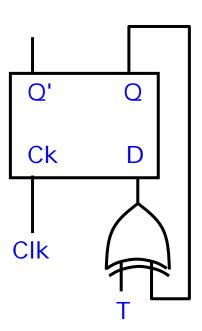

## T Flip-Flop




| ΤQ         | Q+     |        |
|------------|--------|--------|
| 0 0<br>0 1 | 0<br>1 | hold   |
| 1 0<br>1 1 | 1<br>0 | toggle |






## T Flip-Flop Implementation

- Conversion of J-K to T
  - Connect J and K inputs of a J-K FF together
  - $Q^+ = JQ' + K'Q \Rightarrow$   $Q^+ = TQ' + T'Q$



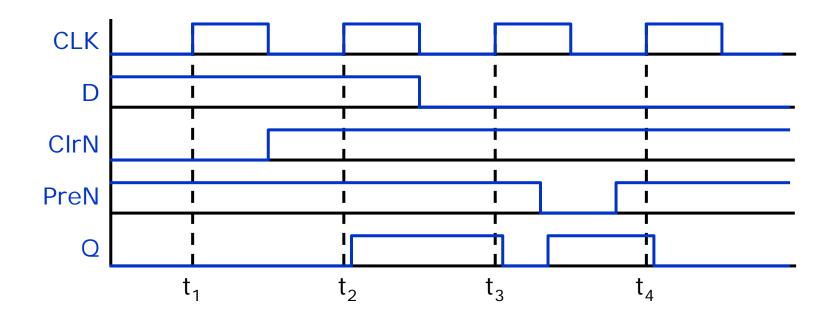

- Conversion of D to T
  - Let D = Q⊕T

$$Q^+ = Q \oplus T$$



## Flip-Flops with Additional Inputs Asynchronous Clear and Preset

☐ Flip-flops often have additional inputs to set the flip-flops to an initial state independent of the clock

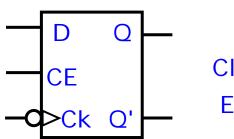


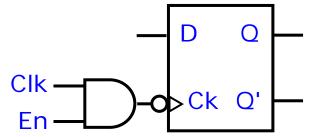

| Ck         | D | PreN | CIrN | Q+            |
|------------|---|------|------|---------------|
| X          | Х | O    | 0    | (not allowed) |
| X          | X | O    | 1    | 1             |
| X          | Χ | 1    | 0    | 0             |
| $\uparrow$ | 0 | 1    | 1    | 0             |
| $\uparrow$ | 1 | 1    | 1    | 1             |
| 0,1,↓      | X | 1    | 1    | Q (no change) |

- CIrN and PreN are **asynchronous** clear and preset inputs (they override the Ck and D inputs)
- CIrN and PreN are **active low** signals
- When CIrN=PreN=1, the FF is in normal operation
- O should not be applied to CIrN and PreN simultaneously

## Flip-Flops with Additional Inputs Asynchronous Clear and Preset

□ Timing diagram for D flip-flop with asynchronous clear and preset

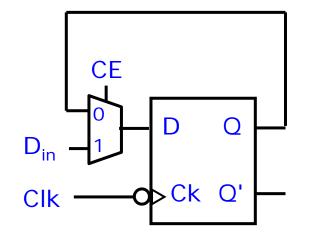




## Flip-Flops with Additional Inputs Clock Enable

□ D flip-flop with clock enable (CE)

**D-CE symbol** 

Implementation 1: gating the clock






Loss of synchronization when

- 1) clock arrive at some FFs at different times
- 2) En changes at the wrong time

Implementation 2: no clock gating



$$Q^+ = D = Q \cdot (CE)' + D_{in} \cdot (CE)$$

No synchronization problem

## Summary

- □ Latch (w/o clock input) vs. flip-flop (w/ clock input)
- Propagation delay, setup time, hold time
- □ Present (current) state, next state
- Characteristic (next-state) equations
  - $Q^+ = S + R'Q (SR = 0)$
  - $\bigcirc O^+ = GD + G'O$
  - $O^+ = D$
  - $Q^+ = D \cdot CE + Q \cdot CE'$
  - $Q^+ = JQ' + K'Q$
  - $Q^+ = T \oplus Q = TQ' + T'Q$

(S-R latch or flip-flop)

(gated D latch)

(D flip-flop)

(D-CE flip-flop)

(J-K flip-flop)

(T flip-flop)

- Restrictions
  - For S-R latch/flip-flop, S and R can not be 1 simultaneously
  - For master-slave S-R flip-flop, S and R should not change during the half clock cycle preceding the active edge
  - Setup and hold time constraints