Switching Circuits & Logic Design

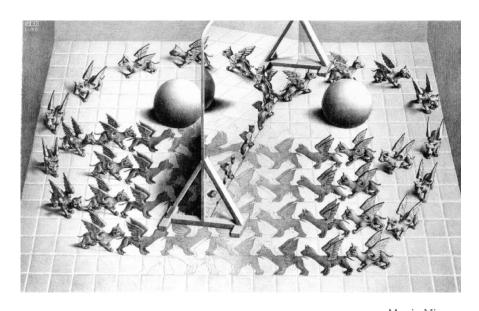
Jie-Hong Roland Jiang 江介宏

Department of Electrical Engineering National Taiwan University

Fall 2012

1

§13 Analysis of Clocked Sequential Circuits



Magic Mirror M.C. Escher, 1946

Outline

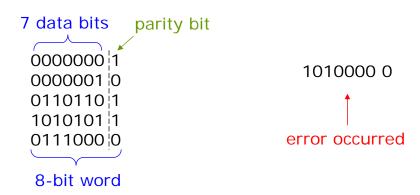
- ■A sequential parity checker
- Analysis by signal tracing and timing charts
- ■State tables and graphs
- General models for sequential circuits

3

A Sequential Parity Checker

- When binary data is transmitted or stored, an extra bit (call a parity bit) is frequently added for the purposes of error detection
 - Odd (even) parity: the total number of 1's in the block, including the parity bit, is odd (even)

Example (8-bit words with odd parity)

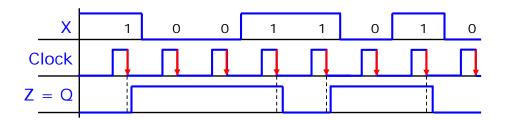


A Sequential Parity Checker

- A parity checker for serial data
 - Z = 1 ⇔ the total number of 1 inputs received is odd (i.e., input parity is odd)
 - \blacksquare Z = 0 initially

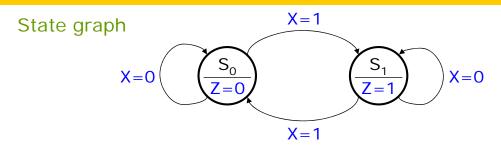
Clock

Block diagram



5

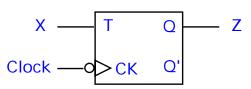
A Sequential Parity Checker



State table

	Next State X=0 X=1	Present Output		Q	X=0	! ⁺ X=1	X=0	Г Х=1	Z
S ₀	S ₀ S ₁	0	_	0	0	1	0	1	0
S_1	$S_1 S_0$	1		1	1	0	0	1	1

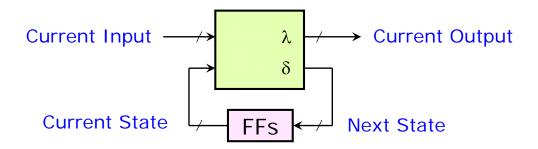
Logic circuit



6

Signal Tracing and Timing Charts

- Find the output sequence resulting from a given input sequence by tracing 0 and 1 signals through a circuit
 - 1. Assume an initial state of the flip-flops
 - 2. Given a current input at the present state, determine the circuit outputs and next state (flip-flop inputs)
 - 3. Update the present state to the next state, and repeat 2

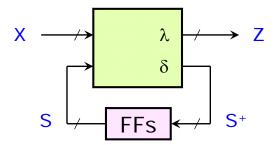


A sequential circuit with n FFs has 2ⁿ states

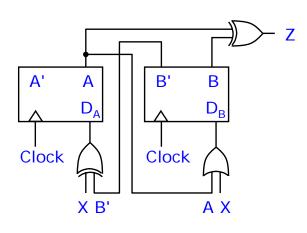
7

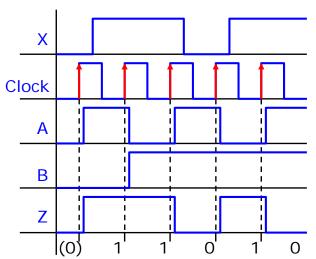
Signal Tracing and Timing Charts

- There are two types of clocked sequential circuits
 - Moore machine
 - Output depends only on the present state
 - Output function $\lambda(S)$
 - Mealy machine
 - Output depends on both the present state and the input
 - Output function $\lambda(S,X)$



Signal Tracing and Timing Charts A Moore Sequential Circuit Example





Assume A=B=0 initially

$$X = 0 \quad 1 \quad 1 \quad 0 \quad 1$$
 $A = 0 \quad 1 \quad 0 \quad 1 \quad 0 \quad 1$
 $B = 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 1$
 $Z = (0) \quad 1 \quad 1 \quad 0 \quad 1 \quad 0$

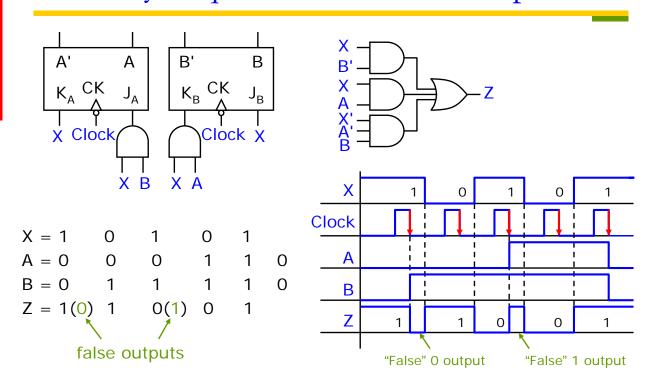
Output is a function of states only ⇒ a Moore circuit

9

Signal Tracing and Timing Charts Moore Sequential Circuit

- □ For a Moore circuit, the output which results from application of a given input does not appear until after the active clock edge
 - The output sequence is displaced in time with respect to the input sequence

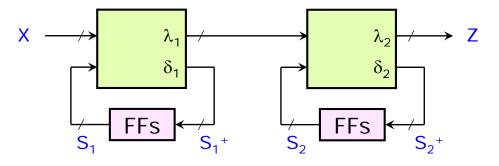
Signal Tracing and Timing Charts A Mealy Sequential Circuit Example



Output is a function of both states and inputs \Rightarrow a Mealy circuit

Signal Tracing and Timing Charts Mealy Sequential Circuit

- ☐ For a Mealy circuit, the output may temporarily assume an incorrect value (called a **false output**, **glitch**, **spike**)
 - The false output occurs after the circuit has changed state and before the input is changed; however, the correct output must appear before the active clock edge
 - □ No false output can appear in a Moore circuit
 - The output sequence is not displaced in time with respect to the input sequence
 - If the output of the circuit is fed into a second sequential circuit which uses the same clock, the false outputs will not cause any problem because the inputs to the second circuit can cause a change of state only at the active clock edge



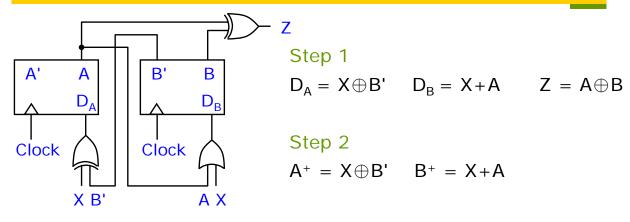
12

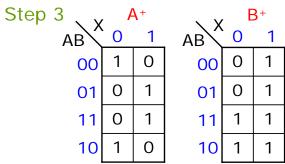
State Tables and Graphs

- Procedure to construct the state table
 - Determine the FF input equations and output equations from the circuit
 - Derive the next-state equation for each FF from its input equations
 - D FF Q+ = [
 - D-CE FF $Q^+ = D \cdot CE + Q \cdot CE'$
 - \blacksquare T FF $Q^+ = T \oplus Q$
 - \blacksquare S-R FF $Q^+ = S + R'Q$
 - 3. Plot a next-state map for each FF
 - Combine these maps to form the state table (or called transition table)

13

State Tables and Graphs A Moore Sequential Circuit Example





Step 4

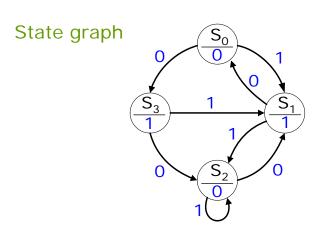
	A+		
AB	X=0	X=1	Z
00	10	01	0
01	00	11	1
11	01	11	0
10	11	01	1

14

State Tables and Graphs A Moore Sequential Circuit Example

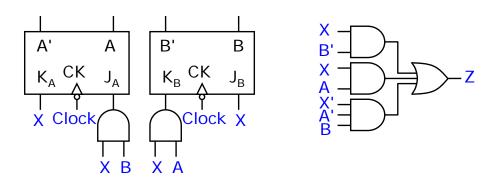
State tables

	A+	B ⁺			Present	Next	State	Present
AB	X=0	X=1	Z	- Cymabalia	State	X=0	X=1	Output (Z)
00	10	01	0	 Symbolic representation 	S ₀	S_3	S ₁	0
01	00	11	1	representation	S_1	S_0	S_2^{\cdot}	1
11	01	11	0		S_2	S_1	S_2	0
10	11	01	1		S_3	S_2	S_1	1



15

State Tables and Graphs A Mealy Sequential Circuit Example



Steps 1,2

$$A^{+} = J_{A}A' + K'_{A}A = XBA' + X'A$$

 $B^{+} = J_{B}B' + K'_{B}B = XB' + (AX)'B = XB' + X'B + A'B$

$$Z = X'A'B + XB' + XA$$

State Tables and Graphs A Mealy Sequential Circuit Example

Step 3

ABX	0	1	ABX	0	1	ABX	0	1
00	0	0	00	0	1	00	0	1
01	0	1	01	1	1	01	1	0
11	1	0	11	1	0	11	0	1
10	1	0	10	0	1	10	0	1
·	A+			В	+		Z	7

Step 4

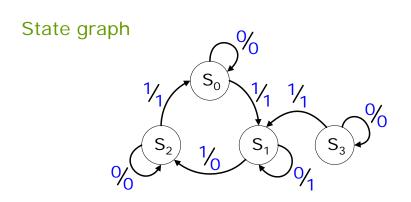
	A+	B+		<u>7</u>
AB	X=0	X=1	X=0	X=1
00	00	01	0	1
01	01	11	1	0
11	11	00	0	1
10	10	01	0	1

17

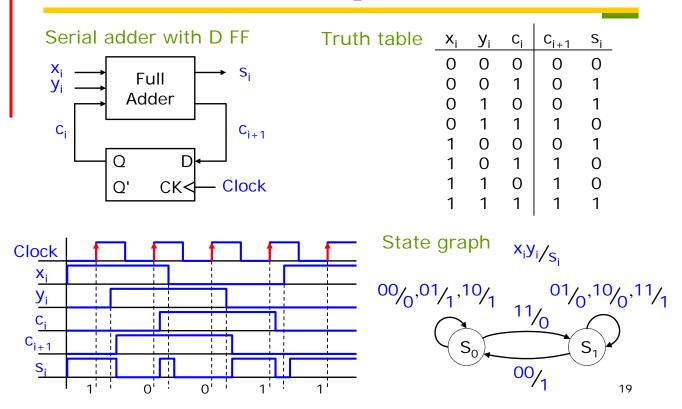
State Tables and Graphs A Mealy Sequential Circuit Example

State tables

AB	A+ X=0	-B+	X=0	<u>7</u> X=1		Present State	Next X=0	State X=1	l	sent tput X=1
00	00	01	0	1	Symbolic representation	S ₀	S ₀	S ₁	0	1
01	01	11	1	0	representation	S_1	S_1	S_2	1	0
11	11	00	0	1		S_2	S_2	S_0	0	1
10	10	01	0	1		S_3	S_3	S_1	0	1

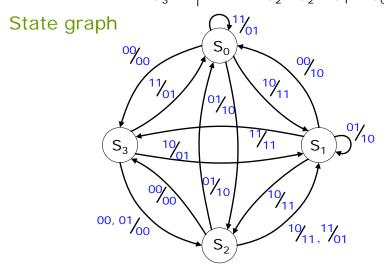


State Tables and Graphs A Serial Adder Example



State Tables and Graphs Example w/ Multiple Inputs & Outputs

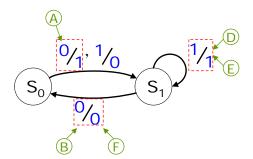
State table	Present	Next State				Present O	utput	(Z ₁ Z	<u>7</u> ₂)
	State	$X_1X_2 = 00$	01	10	11	$X_1X_2 = 00$	01	10	11
	$\overline{S_0}$	S_3	S_2	S ₁	S ₀	00	10	11	01
	S_1		S_1	-	S_3	10	10	11	11
	S_2	S_3	S_0	S_1^-	S_1	00	10	11	01
	S_3^-	S_2	S_2	S₁ .	S_0	00	00	01	01



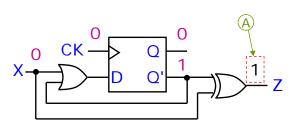
Given an initial state and an input sequence, we know the corresponding state trace and output sequence

State Tables and Graphs Timing Charts

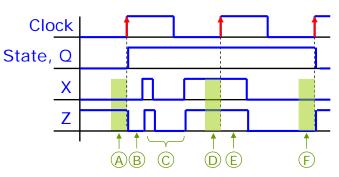
Construction and interpretation of timing charts



Q		Present X=0	State X=1	X=0	X = 1
0	S ₀ S ₁	S1 S0	S1 S1	0 B F	0 1 E



Initial values are shown



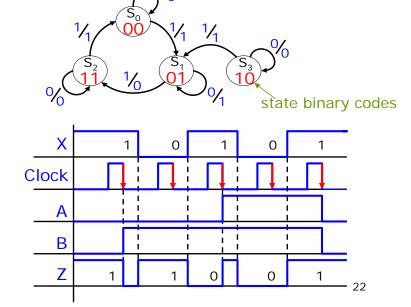
Read X and Z in shaded area

21

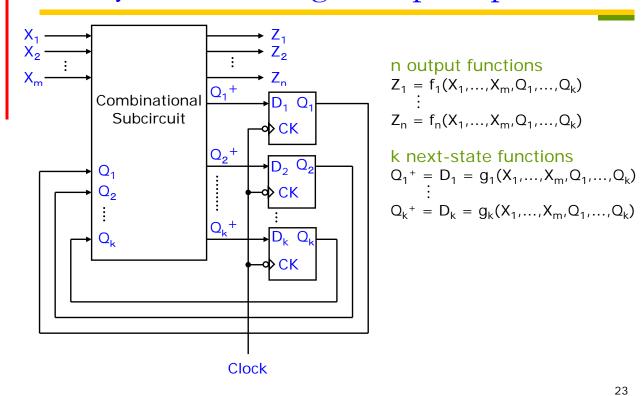
State Tables and Graphs Signal Tracing and Timing Charts

☐ To plot a timing chart for a sequential circuit, the state graph (with states encoded in binary codes) can be a better reference than the circuit itself

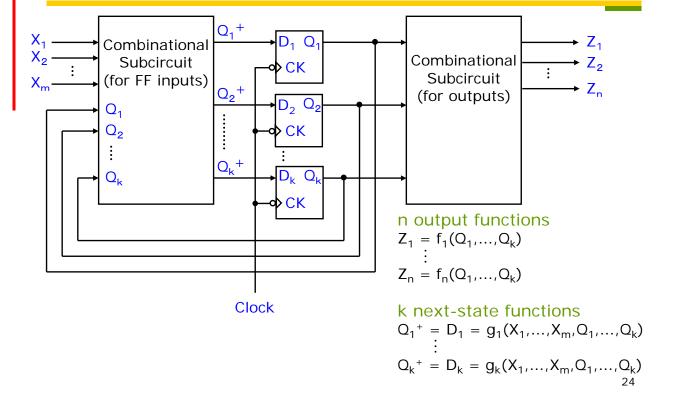




General Models for Sequential Circuits Mealy Circuit Using D Flip-Flops



General Models for Sequential Circuits Moore Circuit Using D Flip-Flops



General Models for Sequential Circuits Unary Representation

Example (prior example with multiple inputs and outputs)

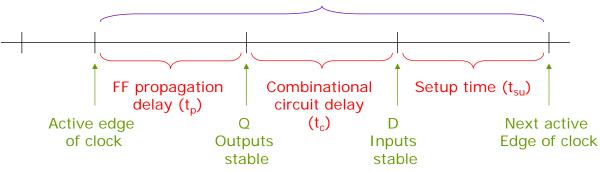
Present	Nex	kt Sta	ate	Present	Outp	out (Z	()	
State	X = 0	1	2	3	X = 0	1	2	3
S_0	S_3	S_2	S ₁	S ₀	0	2	3	1
S_1	S_0	S_1^-	S_2	S_3	2	2	3	3
S_2	S_3	S_0	S_1^-	S_1	0	2	3	1
S_3^-	S_2	S_2	S_1	S_0	0	0	1	1

25

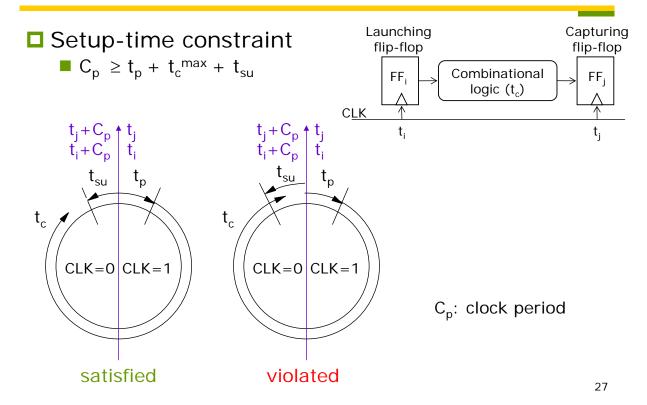
General Models for Sequential Circuits Minimum Clock Period

- The minimum clock period
 - $t_{clk}(min) = t_x + t_c + t_{su}$, where t_x is the time after the active clock edge at which the X inputs are stable
 - \blacksquare $t_{clk}(min) = t_p + t_c + t_{su'}$ if $t_x \le t_p$

Minimum clock period (t_{clk})



General Models for Sequential Circuits Timing Constraints



General Models for Sequential Circuits Timing Constraints

- Hold-time constraint
 - \blacksquare $t_p + t_c^{min} \ge t_h$

