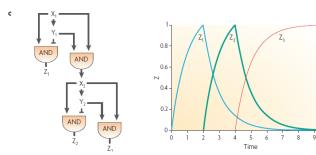
Switching Circuits & Logic Design

Jie-Hong Roland Jiang 江介宏

Department of Electrical Engineering National Taiwan University



Fall 2012

1

§14 Derivation of State Graphs and Tables

Network motifs in developmental transcription networks

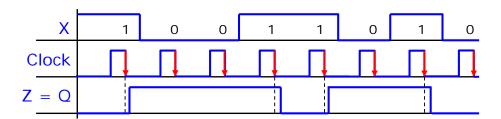
Uri Alon Nature Reviews Genetics, June 2007

Outline

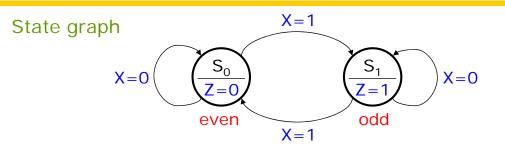
- Design of a sequence detector
- ■More complex design problems
- Guidelines for construction of state graphs
- Serial data code conversion
- □Alphanumeric state graph notation
- Conversion between Mealy and Moore State Graphs

3

Design of a Sequence Detector Sequential Parity Checker (recap)


- A parity checker for serial data
 - Z = 1 ⇔ the total number of 1 inputs received is odd (i.e., input parity is odd)
 - \blacksquare Z = 0 initially

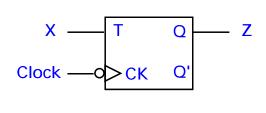
Block diagram
out


Parity
Checker

Z

Clock

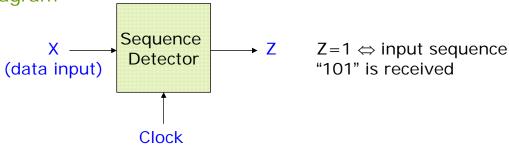
Design of a Sequence Detector Sequential Parity Checker (recap)

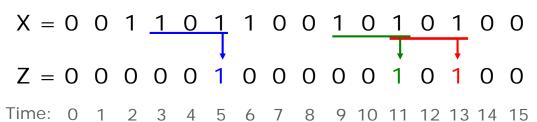

State table

Present State	Next State X=0 X=1	Present Output
S ₀	S_0 S_1	0 1
S_1	$S_1 S_0$	1

state encoding/assignment

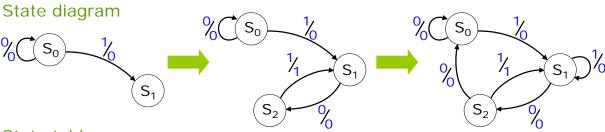
Q	Q	<u>!</u> +	7	Z	
	X=0	X=1	X=0	X=1	
0	0	1	0	1	0
1	1	0	0	1	1


Logic circuit


5

Design of a Sequence Detector {101}-Sequence Detector

Block diagram

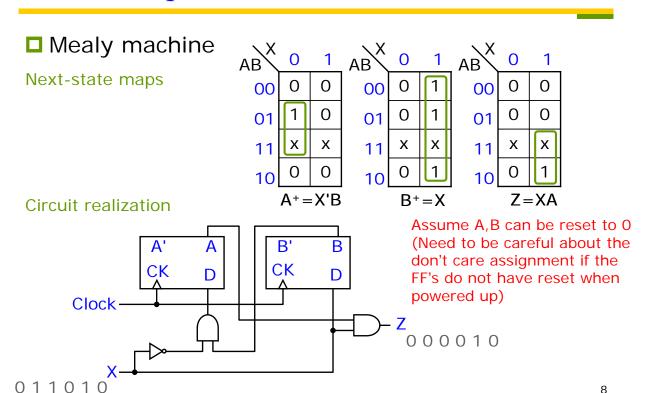


Input/output sequence example

Design of a Sequence Detector {101}-Sequence Detector

■ Mealy machine

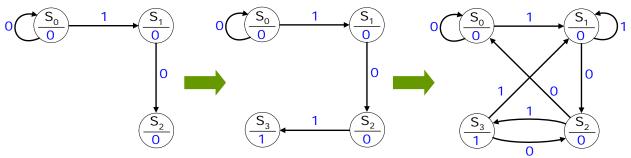
State table


			Pres	sent		A+	B+] :	Z
Present	Next	State	Out	put	AB	X=0	X=1	X=0	X=1
State	X=0	X=1	X=0	X=1	00	00	01	0	0
S_0	So	S ₁	0	0	01	10	01	0	0
S_1°	$\tilde{S_2}$	S ₁	0	0	10	00	01	0	1
S_2	S_0	S ₁	0	1	11	-	-	-	-

S₀: initial state

S₁: sequence ending with 1 received S₂: sequence ending with 10 received

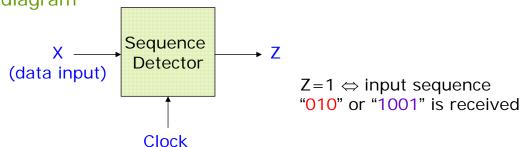
7


Design of a Sequence Detector {101}-Sequence Detector

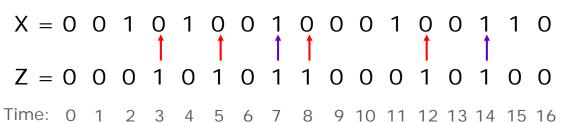
Design of a Sequence Detector {101}-Sequence Detector

■ Moore machine

State diagram

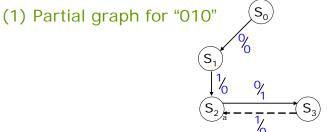


State table


Present	Next	State	Present Output		A ⁺	B ⁺	
State	X=0	X=1	Z	AB	X=0	X=1	Z
S_0	S ₀	S ₁	0	00	00	01	0
S ₁	S ₁	S ₂	0	01 11	00	01 10	0
S_2 S_3	S_2 S_3	S ₀ S ₁	1	10	11	01	1

More Complex Design Problems {010,1001}-Sequence Detector

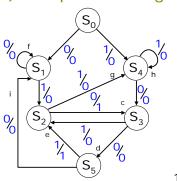
Block diagram



Input/output sequence example

More Complex Design Problems {010,1001}-Sequence Detector

■ Mealy machine implementation

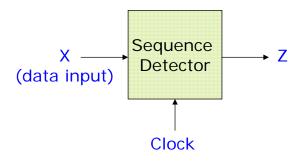


(2) Partial graph for "1001"

(S_0)	
S ₁)
1/ ₆ 9/ ₁	\ \{\}
$\left(S_{2}\right)$	3)
$\frac{1}{2} = \frac{1}{2} = \frac{1}$	
? - 3 ₅	

State	Sequence ends in
S ₀	reset
S ₀ S ₁	0 (but not 10)
S_2	01
S_3	10
S ₂ S ₃ S ₄ S ₅	1 (but not 01)
S_5	100

(3) Complete state graph


11

More Complex Design Problems {010,1001}-Sequence Detector

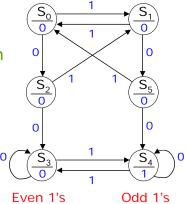
- Exercise
 - Moore machine implementation

More Complex Design Problems Modified Parity Sequence Detector

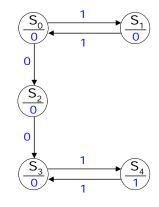
Block diagram

 $Z=1 \Leftrightarrow$ the total number of 1's received is odd and at least two consecutive 0's have been received

Input/output sequence example


13

More Complex Design Problems Modified Parity Sequence Detector


■ Moore machine implementation

(1) Partial graph (3) Complete state graph

(2) Partial graph

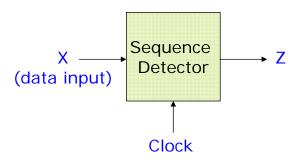
State	Sequence received
S ₀	reset on even 1's
S_1	odd 1's
S_2	even 1's and ends in 0
S_3	even 1's and 00 occurred odd 1's and 00 occurred
S_4	odd 1's and 00 occurred
S_5	odd 1's and ends in 0

More Complex Design Problems Modified Parity Sequence Detector

Exercise

Mealy machine implementation

15


Construction of State Graphs

Guidelines

- 1. Construct sample input/output sequences
- Determine under what conditions, if any, the circuit should reset to its initial state
- 3. If only one or two sequences lead to a nonzero output, construct a partial state graph for those sequences
- Alternatively, determine what sequences or groups of sequences must be remembered by the circuit and set up states accordingly
- 5. Each time an arrow is added, determine whether it can go to one of the previously defined states or whether a new state must be added
- Check there is only one outgoing edge leaving each state for each input value
- Test the completed graph and make sure correct

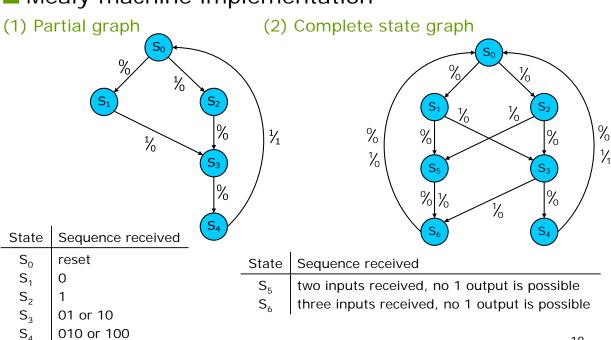
Construction of State Graphs Example 1

Block diagram

 $Z=1 \Leftrightarrow input sequence$ 0101 or 1001 occurs

The circuit examines groups of 4 consecutive inputs, and resets after every 4 inputs

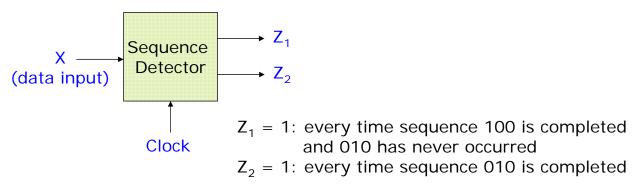
Input/output sequence example


$$X = 0101 \begin{vmatrix} 0010 \end{vmatrix} 1001 \begin{vmatrix} 0100 \end{vmatrix}$$

 $Z = 0001 \begin{vmatrix} 0000 \end{vmatrix} 0001 \begin{vmatrix} 0000 \end{vmatrix}$

17

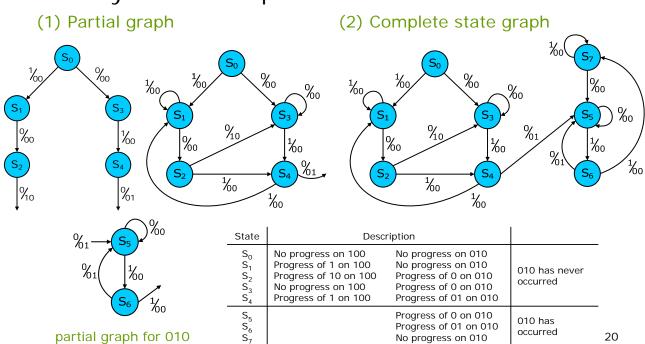
18


Construction of State Graphs Example 1

■ Mealy machine implementation

Construction of State Graphs Example 2 (omitted)

Block diagram



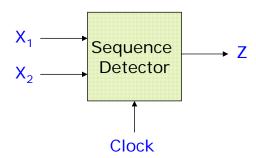
Input/output sequence example

19

Construction of State Graphs Example 2 (omitted)

■ Mealy machine implementation

Construction of State Graphs Example 2 (omitted)


State table

Present	Next	state	Output Z ₁ Z ₂			
State	X=0	X=1	X=0	X=1		
S_0	S_3	S ₁	00	00		
S_1	S_2	S_1	00	00		
S_2	S_3	S_4	10	00		
S_3^-	S_3	S_4	00	00		
S_4	S_5	S_1	01	00		
S_5	S_5	S_6	00	00		
S_6	S_5	S_7	01	00		
S ₇	S_5	S_7	00	00		

21

Construction of State Graphs Example 3 (omitted)

Block diagram

Z remains a constant value unless one of the following input sequences occurs

- (a) Input sequence $X_1X_2 = 01$, 11 causes Z=0
- (b) Input sequence $X_1X_2 = 10$, 11 causes Z=1 (c) Input sequence $X_1X_2 = 10$, 01 causes Z to change value

$$(X_1X_2 = 01, 11 \text{ means } X_1 = 0, X_2 = 1 \text{ followed by } X_1 = 1, X_2 = 1)$$

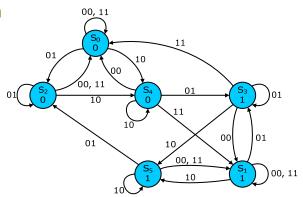
Construction of State Graphs Example 3 (omitted)

■ Moore machine implementation

- Observation:
 - □ Only the previous and present inputs (input sequence of length 2) will determine the output
 - ■Unnecessary to use a separate state for 00 and 11 because neither input starts a sequence which leads to an output change

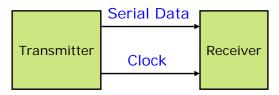
State designation

Previous Input (X_1X_2)	Output (Z)	State Designation
00 or 11	0	S _o
00 or 11	1	S ₁
01	0	S ₂
01	1	S ₃
10	0	S ₄
10	1	S ₅

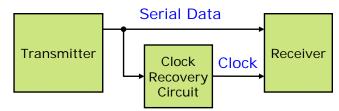

23

Construction of State Graphs Example 3 (omitted)

State table


Present		Ne	xt Sta	ate	
State	Z	$X_1 X_2 = 00$	01	11	10
S ₀	0	S ₀	S ₂	S_0	S ₄
S_1	1	S_1	S_3	S_1	S_5
S_2	0	S_0	S_2	S_{0}	S_4
S_3	1	S_1	S_3	S_0	S_5
S_4	0	S_0	S_3	S_1	S_4
S_5	1	S_1	S_2	S_1	S_5

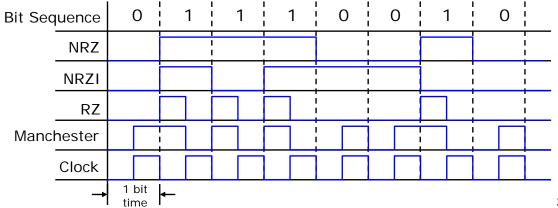
State graph



Serial Data Code Conversion

- Transmission of serial bit streams
 - Two common approaches
 - 1. Clock signal transmitted along with the data

2. Clock recovery circuit used

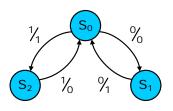


25

Serial Data Code Conversion

- □ Four typical coding schemes
 - NRZ (non-return-to-zero) code
 - NRZI (non-return-to-zero-inverted) code
 - RZ (return-to-zero) code
 - Manchester code
 - ☐ Easy to recover the clock signal

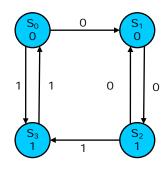
Example


Serial Data Code Conversion NRZ-Code to Manchester-Code

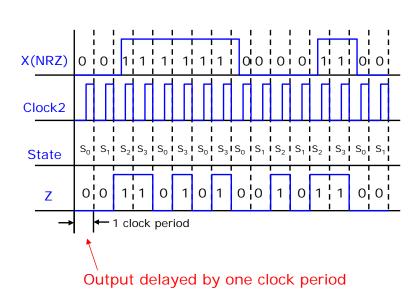
■ Mealy machine implementation

■ Use Clock2, twice the frequency of the basic clock

☐ If the NRZ bit is 0 (1), it will be 0 (1) for two Clock2 periods

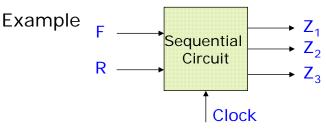

NRZ(X)	0	0	1	1 1	1	l 1 	1	1	0	0	0	0	1	1	0	0	
Manchester (ideal)	0	1	1	0	1	0	1	0	0	1	0	1	1	0	0	1	
Clock2																	
State	S ₀	I I S ₁	S ₀	I I S ₂	S ₀	I I S ₂	S ₀	I I S ₂	S ₀	S ₁	S ₀	S ₁	I I S ₀	S ₂	I I S ₀	I I S ₁	i L
Z (actual)																	
<u> </u>		←	1 clo	ock	peri	od			*	> gl	itch	(fal	se c	outp	ut)		

Present	Next	State	Output Z			
State	X=0	X=1	X=0	X=1		
S ₀	S ₁	S ₂	0	1		
S_1	S_0	-	1	-		
S_2	-	S_0	-	0		


27

Serial Data Code Conversion NRZ-Code to Manchester-Code

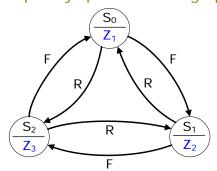
■ Moore machine implementation



Present	Next	State	Present
State	X=0	X = 1	Output Z
S ₀ S ₁	S ₁ S ₂ S ₁	S ₃	0
S_1	S_2	-	0
S_2	S_1	S_3	1
S_2 S_3	-	S_3 S_0	1

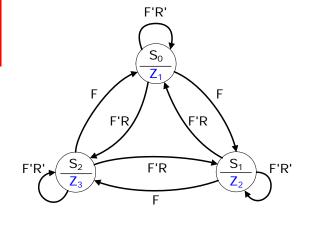
Alphanumeric State Graph Notation

□ State graphs with variable names on arc labels (and in states for Moore machine)



Completely specified state graph

F'R'



Incompletely specified state graph

Alphanumeric State Graph Notation

State graph

State table

PS		NS			Output
	FR=00	01	10	11	$Z_1Z_2Z_3$
S_0	S ₀	S_2	S_1	S_1	100
S_1	S ₁	S_0	S_2	S_2	010
S_2	S_2	S_1	S_0	S_0	0 0 1

Check input signals (for every state):

$$F + F'R + F'R' = F + F' = 1$$

⇒ Transition defined for every input combination

$$F \cdot F'R = 0$$
, $F \cdot F'R' = 0$, $F'R \cdot F'R' = 0$

⇒ At most one next state for every input combination

Alphanumeric State Graph Notation

- A completely specified state graph has the following properties
 - ORing together all input labels on arcs outgoing from a state reduces to 1 (i.e., complete transition)
 - For every input combination, at least one next state is defined
 - ANDing together any pair of input labels on arcs outgoing from a state reduces to 0 (i.e., deterministic transition)
 - For every input combination, no more than one next state is defined
 - If both properties are true, then exactly one next state is defined

31

Alphanumeric State Graph Notation

- Convention for Mealy machine
 - The label X_iX_j/Z_pZ_q on an arc means if X_i and X_j are 1 (we don't care what the other input values are), the outputs Z_p and Z_q are 1 (and the other outputs are 0)

E.g., for a circuit with 4 inputs (X_1, X_2, X_3, X_4) and 4 outputs (Z_1, Z_2, Z_3, Z_4)

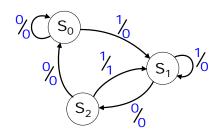
 X_1X_4'/Z_2Z_3 is equivalent to 1--0/0110

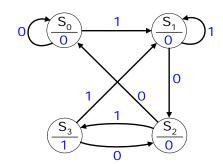
Conversion between Mealy and Moore State Graphs

Convert Mealy to Moore

- 1. Push the output label on an edge to its next state (so delay introduced!)
- 2. If a state receives different output labels, duplicate the state such that every copy has exactly one output label
- Connect every edge properly to the state with correct output label

Convert Moore to Mealy


- Distribute the output label of a state to its incoming edges
- 2. Simplify the state graph by merging equivalent states


Mealy-type implementation of a circuit can have fewer states than Moore-type implementation

33

Conversion between Mealy and Moore State Graphs

■ Exercise

