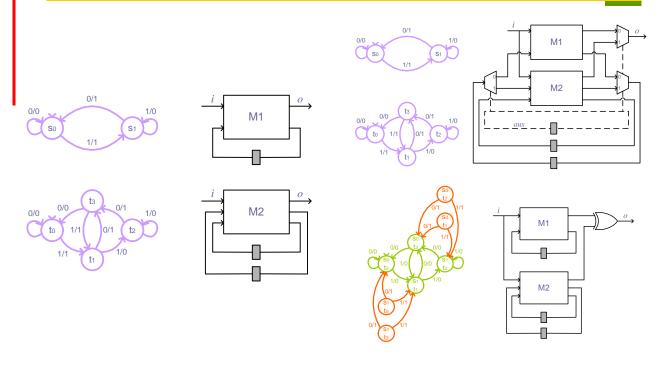
Switching Circuits & Logic Design

Jie-Hong Roland Jiang 江介宏



Fall 2012

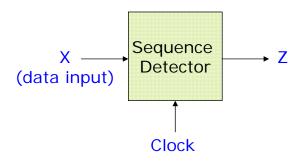
1

§15 Reduction of State Tables, State Assignment

Outline

- ■Elimination of redundant states
- Equivalent states

Not in exam:


- Determination of state equivalence using an implication table
- Equivalent sequential circuits
- ■State assignment

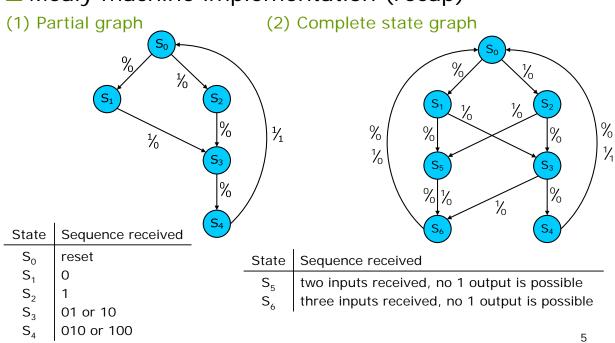
3

Elimination of Redundant States

■ Example (§14.3)

Block diagram

Z=1 ⇔ input sequence 0101 or 1001 occurs


The circuit examines groups of 4 consecutive inputs, and resets after every 4 inputs

Input/output sequence example

$$X = 0101 \begin{vmatrix} 0010 & 1001 & 0100 \\ Z = 0001 & 0000 & 0001 & 0000 \end{vmatrix}$$

Elimination of Redundant States

■ Mealy machine implementation (recap)

Elimination of Redundant States

Input

- □ State table for {0101, 1001} sequence detector
 - Consider all possible input sequences of length four

Next State | Present Output

	Sequence	State	X=0	X = I	X=0	X = I
	reset	Α	В	С	0	0
0/A 1/0	0 1	B C	D F	E G	0 0	0 0
B	00	D	H		0	0
% 1 ₁ % 1 ₁	01 10	E F	L	K M	0	0
	11	G	N	Р	0	Ο
0/ D1/ 0/ E1/ 0/ F1/ 0/ G1/	000	Н	Α	Α	0	0
0/ \0 0/ \0 0/ \0 0/ \0	001	I	Α	Α	0	0
	010	J	Α	Α	0	1
(H) (I) (I) (K) (L) (M) (N) (D)	011	K	Α	Α	0	0
	100	L	Α	Α	0	1
-	101	M	Α	Α	0	0
0/1/	110	N	Α	Α	0	0
*\(\delta\) \(\delta\)	111	Р	Α	Α	0	0 6

Elimination of Redundant States

Input	Present	Next State			sent put
Sequence	State	X=0	X=1	X=0	X=1
reset	Α	В	С	0	0
0	В	D	Е	0	0
1	С	F	G	0	0
00	D	Н	H	0	0
01	Е	J	ЖH	0	0
10	F	۲Ŋ	MH	0	0
11	G	N.H	RH	0	0
000	(H)	Α	Α	0	0
-001	Ĭ	A	A	0	0
010	J	Α	Α	0	1
-011	K	A	A	0	
- 100	L	Α	Α	0	-1
- 101	M	A	A	0	0
- 110	N	A	A	0	-0 -
111	P	A	A	0	0

- ☐ If two states have the same next state and the same output under every possible input, then they are equivalent states (the converse is not true!)
 - {H,I,K,M,N,P} and {J,L} are equivalent state sets
- □ For every equivalent state set, we can take any of its states as the representative and replace the other states with this representative
 - E.g., take H for {H,I,K,M,N,P} and take J for {J,L}

7

Elimination of Redundant States

Input	Present	Next :	State		sent :put
Sequence	State	X=0	X=1	X=0	X=1
reset	Α	В	С	0	0
0	В	D	Ε	0	0
1	С	×Ε	\mathcal{L}^{D}	0	0
00	D	Н	×Η	0	0
01	(E)	J	ЖH	0	0
10	F	LJ	MH	0	 0-
11	G	NH	RH	0	
000	H	Α	Α	0	0
-001		A	A	0	0
010	(1)	Α	Α	0	1
-011	K	A	A	0	0-
- 100	L	Α	Α	0	-1
- 101	M	A	A	0	
-110	N	Α	Α	0	 0-
111	Р	A	A	0	0 -

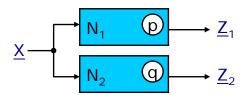
- □ After substituting H for I,K,M,N,P, and substituting J for L, we see that {D,G} and {E,F} are again equivalent state sets
 - I.e., having the same next state and the same output under every possible input
- □ Taking D as the representative for equivalent state set{D,G} and E for {E,F}, we can eliminate rows of G and F

Elimination of Redundant States

		Nove (24.4.		sent
Input	Present	Next :	State		put
Sequence	State	X=0	X=1	X=0	X=1
reset	Α	В	С	0	0
0	В	D	Ε	0	0
1	С	×Ε	\mathcal{L}^{D}	0	0
00	D	Н	¥	0	0
01	(Ē)	J	ЖH	0	0
- 10	F	\ \	MH	0	0-
- 11	G	NH	RH	0	0
000	(H)	Α	Α	0	0
-001	Ī	A	A	0	0
010	J	Α	Α	0	1
-011	K	A	A	0	0
- 100	L	A	Α	0	-1
-101	M	A	A	0	-0 -
- 110	N	A	Α	0	-0 -
111	Р	A	Α	0	-0

- At the end of the above procedure, known as row matching, we have 7 states A,B,C,D,E,H,J left
 - These 7 states may or may not be equivalent
 - Their equivalences need to be further determined by the method of §15.2 and §15.3
 - ☐ In this example, the 7 states happen to be inequivalent
- Row matching is not sufficient to find all equivalent states (why?)
 - It works however in the special case where the circuit resets to the starting state after receiving a fixed number of inputs (why?)

9


Elimination of Redundant States

□ Reduced state table and state graph

					A
Present	Next	State	Out	put	/ %/
State	X=0	X=1	X=0	X=1	
Α	В	С	0	0	$-$ / $(B)_{1/}$ $_{1/}$ (C) \
В	D	Ε	0	Ο	
С	E	D	0	0	% % %
D	Н	Н	0	Ο	7/1
Е	J	Н	0	0	/₀ \
Н	Α	Α	0	0	
J	Α	Α	0	1	- % 1/2 /% /
					- \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
					H

Equivalent States

- Two states are equivalent if there is no way of telling them apart through observation of the circuit inputs and outputs
- □ Consider two sequential circuits N₁ and N₂ (they may be different circuits or two copies of the same circuit), one starting in state p and one in state q
 - If the output sequences \underline{Z}_1 and \underline{Z}_2 are the same (different) for every (some) input sequence \underline{X} , then states p and q are equivalent (inequivalent)
 - □ we write $\underline{Z}_1 = \lambda_1(p,\underline{X})$ and $\underline{Z}_2 = \lambda_2(q,\underline{X})$ (because the output sequence is a function of the initial state and the input sequence)

11

Equivalent States

Definition 15.1

Let N_1 and N_2 be sequential circuits (not necessarily different). Let \underline{X} represent a sequence of inputs of arbitrary length. Then state p in N_1 is **equivalent** to state q, denoted $p \equiv q$, in N_2 iff $\lambda_1(p,\underline{X}) = \lambda_2(q,\underline{X})$ for every possible input sequence \underline{X} .

Symbol "≡" here is different from XNOR

☐ Theorem 15.1 (proof in Appendix C)

Two states p and q of a sequential circuit are equivalent iff for every single input X, the outputs are the same and the next states are equivalent, i.e.,

 $\lambda(p,X) = \lambda(q,X)$ and $\delta(p,X) \equiv \delta(q,X)$

where $\lambda(p,X)$ and $\delta(p,X)$ are the output and the next state, respectively, given the present state p and input X.

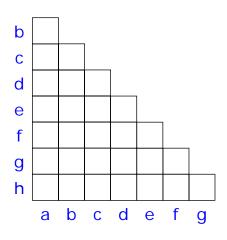
- Note that the next states don't need to be the same (=) (used in row matching), but just equivalent (=)
 - E.g., D = G in the table of Slide 6, but their next states (H and N for X=0, and I and P for X=1) are not equal
 - Row matching is a special case of Theorem 15.1

Equivalent States

- □ Example (Table 13.4)
 - Show no equivalent states

Present Next State				Present Output (Z ₁ Z ₂)				
State	$X_1X_2 = 00$	01	10	11	$X_1X_2 = 00$	01	10	11
S ₀	S_3	S_2	S ₁	S ₀	00	10	11	01
S_1	S_0	S_1	S_2	S_3	10	10	11	11
S ₂	S_3	S_0	S ₁	S ₁	00	10	11	01
S_3	S_2	S_2	S ₁	S_0	00	00	01	01

□ From the outputs, we know only S₀ and S₂ can possibly be equivalent. Moreover,


$$S_0 \equiv S_2$$
 iff $S_3 \equiv S_3$, $S_2 \equiv S_0$, $S_1 \equiv S_1$, and $S_0 \equiv S_1$
But $S_0 \not\equiv S_1$ (because the outputs differ), so $S_0 \not\equiv S_2$

13

Determination of State Equivalence (Not in Exam)

- ☐ Use an **implication table** (a **pair chart**) to check each pair of states for possible equivalence
 - Non-equivalent pairs are systematically eliminated until only the equivalent pairs remain
 - This chart has a square for every possible states; a square in column i and row j corresponds to state pair i-j

Present	Next S	Present	
State	X = 0	1	Output
а	d	С	0
b	f	h	0
С	е	d	1
d	а	е	0
е	С	а	1
f	f	b	1
g	b	h	0
h	С	g	1

Determination of State Equivalence

b

C

d

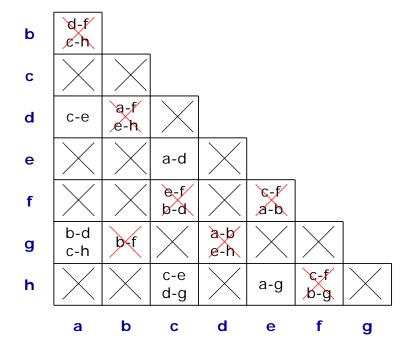
е

g

h

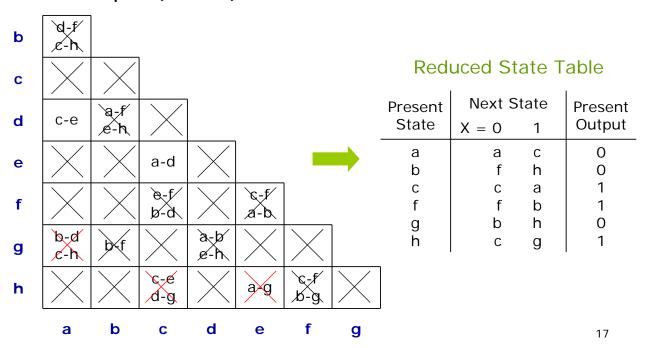
■ Example

Present State	Next S X = 0	tate 1	Present Output
a	d	С	0
b	f	h	0
С	е	d	1
d	a	е	0
е	С	a	1
f	f	b	1
g	b	h	0
h	С	g	1


d-f c-h	-	a ≡ b i	ff d ≡ f	and c	≡ h	
X	X	-	b ≢ c s	ince o	utputs	differ
a-d c-e	a-f e-h	\times				
X	X	C-e. a-d	X		_	
X	X	e-f b-d	X	c-f a-b		
b-d c-h	b-f	X	a-b e-h	X	X	
X	X	c-e d-g	X	a-g	c-f b-g	X
а	b	С	d	е	f	g

15

16


Determination of State Equivalence

■ Example (cont'd)

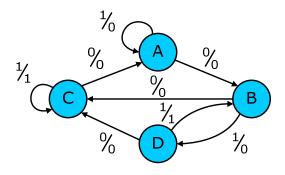
Determination of State Equivalence

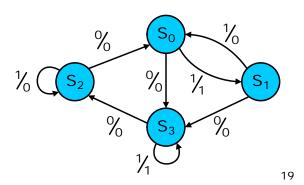
■ Example (cont'd)

Equivalent Sequential Circuits (Not in Exam)

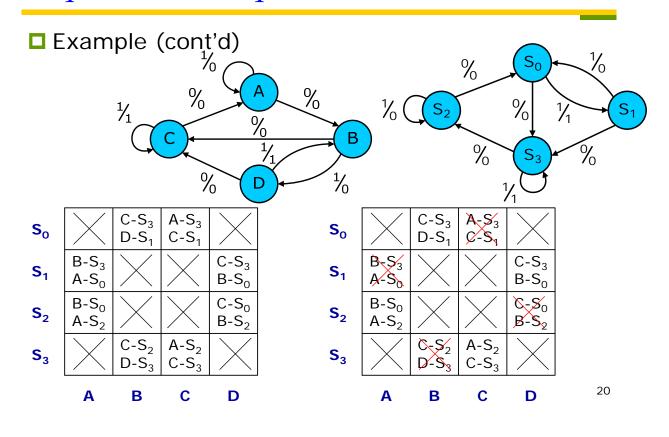
□ Definition 15.2

Sequential circuit N_1 is **equivalent** to circuit N_2 if for each state p in N_1 , there is a state q in N_2 such that p = q, and conversely, for each state s in N_2 , there is a state t in N_1 such that s = t


□ If both N_1 and N_2 have a minimum number of states (i.e., state minimized) and $N_1 = N_2$, then N_1 and N_2 must have the same number of states


Equivalent Sequential Circuits

■ Example


		N_1		
	X=0	1	X=0	1
Α	В	Α	0	0
В	С	D	0	1
С	Α	С	0	1
D	С	В	0	0

		N_2		
	X=0	1	X=0	1
S_0	S ₃	S ₁	0	1
S_1	S_3	S_0	0	0
S_2	S ₀	S_2	0	0
S_3	S_2	S_3	0	1

Equivalent Sequential Circuits

State Assignment (Not in Exam)

- □ After the number of states in a state table has been reduced, the flip-flop input equations can be derived as follows
 - 1. Perform **state assignment** (assign flip-flop state values to correspond to the states in the reduced table)
 - The cost of the logic required to realize a sequential circuit is strongly dependent on the way this state assignment is made (subject of §15.7 ~ §15.9)
 - Construct a transition table which gives the next states of the flip-flops as a function of the present states and inputs
 - 3. Derive the next-state maps from the transition table
 - 4. Find flip-flop maps from the next-state maps using the techniques of §12 and find the flip-flop input equations from the maps