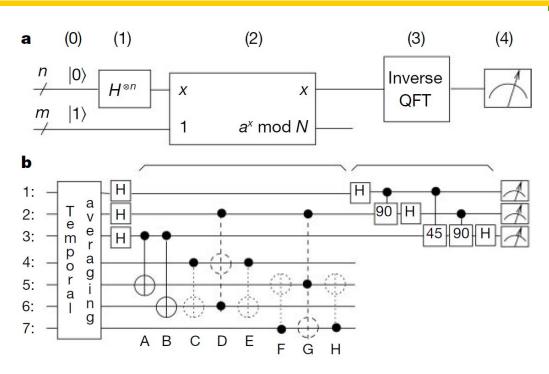
Switching Circuits & Logic Design

Jie-Hong Roland Jiang 江介宏

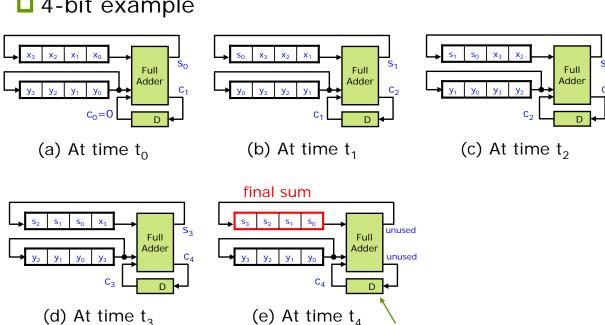

Department of Electrical Engineering National Taiwan University

Fall 2012

1

§18 Circuits for Arithmetic Operations

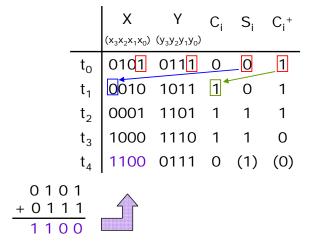
Outline

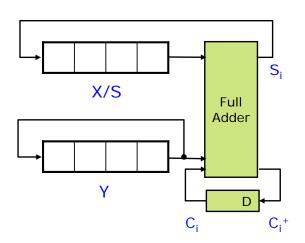

How to use a sequential circuit to control a sequence of operations in a digital system

- ■Serial adder with accumulator
- ■Design of a parallel multiplier

3

Serial Adder with Accumulator Operation

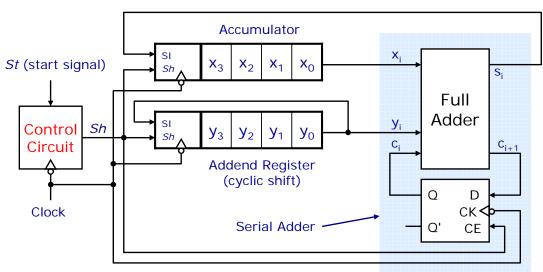

■ 4-bit example



Clear D F/F before next use

Serial Adder with Accumulator Operation

■ 4-bit example

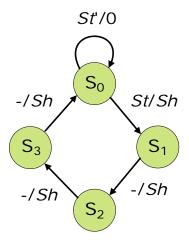


5

6

Serial Adder with Accumulator

■ Block diagram


SI: serial input

St: start signal control signals

Sh: shift signal ∫

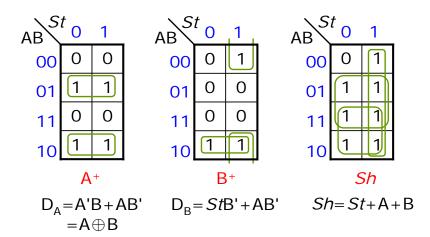
Serial Adder with Accumulator Control Circuit Design

□ State graph and state table

Next S	tate	Sh			
St = 0	1	St = 0	1		
S ₀	S ₁ S ₂	0	1 1		
S_3	S_3	1 1	1 1		
	$St = 0$ S_0 S_2	$egin{array}{cccc} S_0 & S_1 \\ S_2 & S_2 \\ S_3 & S_3 \\ \end{array}$	$St = 0$ 1 $St = 0$ $ \begin{array}{cccc} S_0 & S_1 & 0 \\ S_2 & S_2 & 1 \\ S_3 & S_3 & 1 \end{array} $		

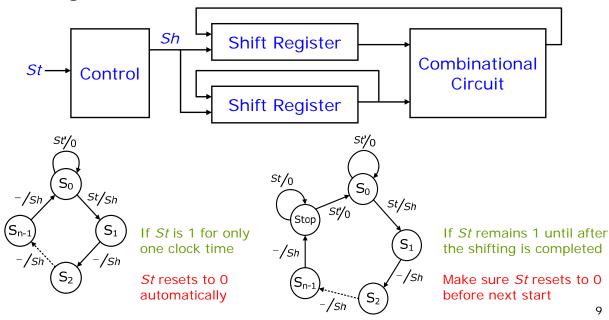
Shift 4 times after St is activated

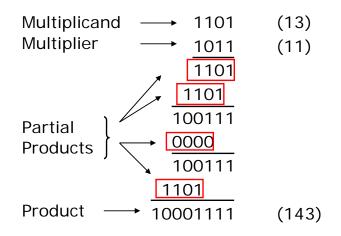
7


Serial Adder with Accumulator Control Circuit Design

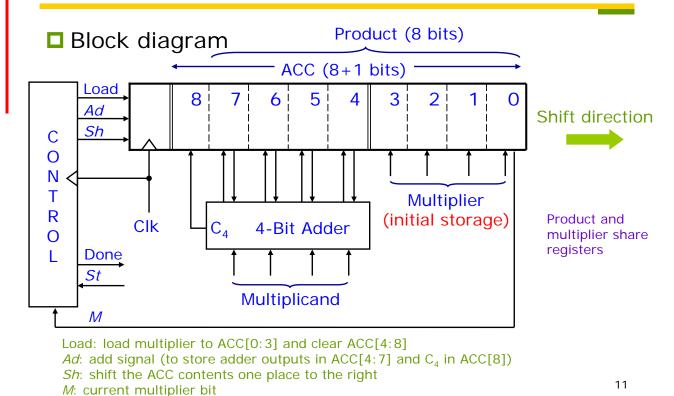
Derivation of control circuit equations

Transition table

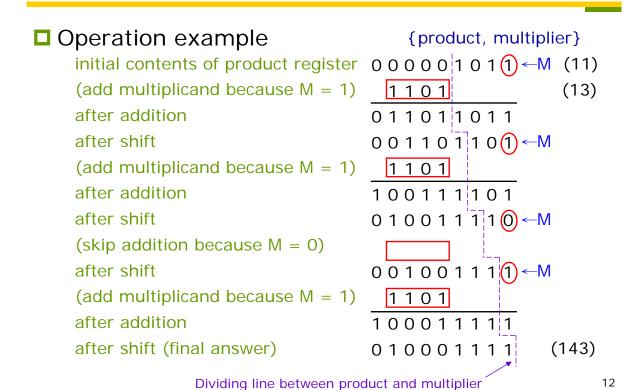

	AB	A+B+	-
		St = 0	1
$\overline{S_0}$	00	00	01
S_0 S_1 S_2 S_3	01	10	10
S_2	10	11	11
S_3^-	11	00	00
_	<u> </u>	'	


Serial Adder with Accumulator Typical Serial Processing Unit

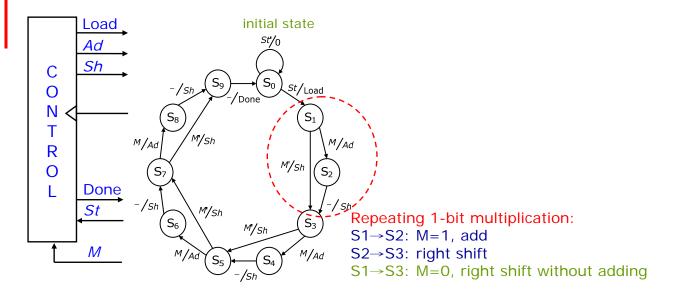
■ Typical serial processing unit with n-bit shift registers



Design of a Parallel Multiplier

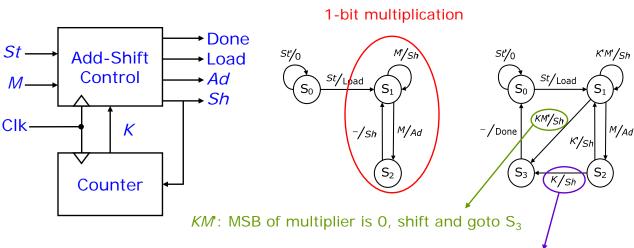

- Design a parallel adder for positive binary numbers
 - Require only shifting and adding
 - Add two binary numbers at a time

Design of a Parallel Multiplier Parallel Binary Multiplier



Design of a Parallel Multiplier Parallel Binary Multiplier

Design of a Parallel Multiplier Control Circuit Design


■ Method 1 (direct implementation)

13

Design of a Parallel Multiplier Control Circuit Design

- Method 2 (use counter, fewer states)
 - Introduce signal *K* for counting completion

K: addition finished for MSB, shift and goto S₃

How many states in total (including add-shift control and counter)?

Design of a Parallel Multiplier Control Circuit Design

■ Method 2 (cont'd)

Operation example for 1101×1011

Time	State	Counter	Product							
			Register	St	М	Κ	Load	Ad	Sh	Done
t_{o}	S_0	00	000000000	0	0	0	0	0	0	0
t_1	S_0	00	00000000	1	0	0	1	0	0	0
t_2	S_1	00	000001011	0	1	0	0	1	0	0
t_3	S_2	00	011011011	0	1	0	0	0	1	0
$t_{\scriptscriptstyle{4}}$	S_1	01	001101101	0	1	0	0	1	0	0
t_5	S_2	01	100111101	0	1	0	0	0	1	0
t ₆	S_1	10	010011110	0	0	0	0	0	1	0
t ₇	S_1	11	001001111	0	1	1	0	1	0	0
t ₈	S_2	11	100011111	0	1	1	0	0	1	0
t_9	S_3	00	010001111	0	1	0	0	0	0	1