Logic Synthesis \& Verification, Fall 2012

National Taiwan University

Problem Set 1

Due on 2012/10/9
Please drop your solution in the instructor's mailbox in EE2 Building by 18:00

1 [Boolean Algebra Definition]

Does $(\{0,1\}, \oplus, \cdot, 0,1)$, where \oplus and \cdot stand for Boolean XOR and AND operations, respectively, form a Boolean algebra? Which postulates of Boolean algebra are satisfied and which are not?

2 [Boolean Algebra Properties]

Prove the following equalities using only the postulates of Boolean algebra.
(a) $(a+b)^{\prime}=\left(a^{\prime} \cdot b^{\prime}\right)$
(b) $a+a^{\prime} \cdot b=a+b$
(Please specify clearly which postulate is applied in each step of your derivation.)

3 [Relation over Boolean Algebra]

Define the relation \leq on a Boolean algebra with carrier \mathbf{B} as follows

$$
a \leq b \text { if and only if } a \cdot b^{\prime}=0
$$

for every $a, b \in \mathbf{B}$, where b^{\prime} is the inverse element of b.
(a) Show that this relation induces a partial order on \mathbf{B}, that is,
(i) reflexive: $a \leq a$
(ii) antisymmetric: if $a \leq b$ and $b \leq a$, then $a=b$
(iii) transitive: if $a \leq b$ and $b \leq c$, then $a \leq c$
(b) What does " \leq " correspond to in the subset algebra (the algebra of classes)?
(c) Let $(\mathbf{B},+, \cdot, 0,1)$ be a Boolean algebra, and let a and b be two distinct elements of \mathbf{B} with $a \leq b$. Show that the system $([a, b],+, \cdot, a, b)$ is also a Boolean algebra, where interval $[a, b]=\{x \mid x \in \mathbf{B}$ and $a \leq x \leq b\}$.

4 [Boolean Functions]

Let g and h be single-variable Boolean functions. For each of the following cases, express $f(0)$ and $f(1)$ as simplified formulas involving $g(0), g(1), h(0)$, and $h(1)$.
(a) $f(x)=g(h(x))$
(b) $f(x)=g\left(g^{\prime}(x)\right)$

5 Boolean Operations

Given an arbitrary Boolean function $f\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)$ in switching algebra, what is the smallest (in terms of onset sizes) Boolean function $g\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)$ such that $g\left(x_{1}, \ldots, 0, \ldots, x_{n}\right)=g\left(x_{1}, \ldots, 1, \ldots, x_{n}\right)$ and $(f \wedge \neg g)=0$? What is the Boolean difference of g over variable x_{i} ? Express g using f, Boolean connectives (\wedge, \vee, \neg), and/or quantifiers (\exists, \forall).

