Logic Synthesis & Verification, Fall 2012 National Taiwan University

Problem Set 1

Due on 2012/10/9

Please drop your solution in the instructor's mailbox in EE2 Building by 18:00.

1 [Boolean Algebra Definition]

Does $(\{0, 1\}, \oplus, \cdot, 0, 1)$, where \oplus and \cdot stand for Boolean XOR and AND operations, respectively, form a Boolean algebra? Which postulates of Boolean algebra are satisfied and which are not?

2 [Boolean Algebra Properties]

Prove the following equalities using only the postulates of Boolean algebra.

(a) $(a+b)' = (a' \cdot b')$ (b) $a+a' \cdot b = a+b$

(Please specify clearly which postulate is applied in each step of your derivation.)

3 [Relation over Boolean Algebra]

Define the relation \leq on a Boolean algebra with carrier **B** as follows

 $a \leq b$ if and only if $a \cdot b' = 0$

for every $a, b \in \mathbf{B}$, where b' is the inverse element of b.

- (a) Show that this relation induces a partial order on **B**, that is,
 - (i) reflexive: $a \leq a$
 - (ii) antisymmetric: if $a \leq b$ and $b \leq a$, then a = b
 - (iii) transitive: if $a \leq b$ and $b \leq c$, then $a \leq c$
- (b) What does "≤" correspond to in the subset algebra (the algebra of classes)?
 (c) Let (B, +, ., 0, 1) be a Boolean algebra, and let a and b be two distinct elements of B with a ≤ b. Show that the system ([a, b], +, ., a, b) is also a
- Boolean algebra, where interval $[a, b] = \{x \mid x \in \mathbf{B} \text{ and } a \le x \le b\}.$

4 [Boolean Functions]

Let g and h be single-variable Boolean functions. For each of the following cases, express f(0) and f(1) as simplified formulas involving g(0), g(1), h(0), and h(1).

(a)
$$f(x) = g(h(x))$$

(b)
$$f(x) = g(g'(x))$$

2 Problem Set 1

5 Boolean Operations

Given an arbitrary Boolean function $f(x_1, \ldots, x_i, \ldots, x_n)$ in switching algebra, what is the smallest (in terms of onset sizes) Boolean function $g(x_1, \ldots, x_i, \ldots, x_n)$ such that $g(x_1, \ldots, 0, \ldots, x_n) = g(x_1, \ldots, 1, \ldots, x_n)$ and $(f \land \neg g) = 0$? What is the Boolean difference of g over variable x_i ? Express g using f, Boolean connectives (\land, \lor, \neg) , and/or quantifiers (\exists, \forall) .