Logic Synthesis \& Verification, Fall 2012

National Taiwan University

Problem Set 2

Due on 2012/10/31 before lecture

1 [Cofactor and QBF]

(a) (6\%) Given two arbitrary Boolean functions f and g and a Boolean variable v, prove that $(\neg f)_{v}=\neg\left(f_{v}\right)$ and $(f\langle o p\rangle g)_{v}=\left(f_{v}\right)\langle o p\rangle\left(g_{v}\right)$ for $\langle o p\rangle=$ $\{\vee, \oplus\}$.
(b) (12%) Prove or disprove the following implications:

$$
\begin{array}{r}
\forall x, \exists y \cdot f(x, y, z) \leftrightarrow \exists y, \forall x \cdot f(x, y, z) \\
\forall x \cdot(f(x, y) \wedge g(x, y)) \leftrightarrow(\forall x \cdot f(x, y)) \wedge(\forall x . g(x, y)) \\
\forall x \cdot(f(x, y) \vee g(x, y)) \leftrightarrow(\forall x \cdot f(x, y)) \vee(\forall x . g(x, y)) \tag{3}
\end{array}
$$

(c) (12%) For an arbitrary Boolean function $f\left(x_{1}, \ldots, x_{n}\right)$, let a Boolean function $g\left(x_{1}, \ldots, x_{n-1}\right)$ satisfy

$$
\forall x_{n} \cdot f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{n-1}, g\left(x_{1}, \ldots, x_{n-1}\right)\right)
$$

Express the on-set, off-set, and don't-care-set of g in terms of function f.

2 [BDD Operation]

Let $f=\neg a b \neg c \vee a \neg c d \vee a c \neg d$ and $g=c \oplus d \oplus e$.
(a) (10%) Draw the (shared) ROBDDs of f and g under variable ordering $a<$ $b<c<d<e$ (with a on top).
(b) (10%) Compute the ROBDD of $\operatorname{COMPOSE}(f, c, g)$.

3 [SAT Solving]

In pseudo Boolean constraint solving, one method is to translate the constraints into a CNF formula for SAT solving. Consider the linear inequality $5 x_{1}+3 x_{2}+$ $x_{3}+x_{4}+x_{5} \geq 6$, where x_{i} 's are Boolean variables and " + " is arithmetic addition.
(a) (10%) Build an ROBDD (variable ordering $x_{1}<x_{2}<x_{3}<x_{4}<x_{5}$) that characterizes the set of feasible solutions to the inequality.
(b) (10%) Treat the above ROBDD as a network of multiplexors and translate it to a CNF formula.
(c) (10%) Show that there exists a linear inequality whose solution-characterizing ROBDD has nodes exponential in the number of variables.

4 [SAT Solving]

Consider SAT solving the CNF formula consisting of the following 8 clauses

$$
\begin{gathered}
C_{1}=(a+b+c), C_{2}=\left(a+b^{\prime}+d\right), C_{3}=\left(a+b+c^{\prime}+d^{\prime}\right), \\
C_{4}=\left(b^{\prime}+c^{\prime}+d\right), C_{5}=(a+b+d), C_{6}=\left(a^{\prime}+b^{\prime}+c\right), \\
C_{7}=\left(a^{\prime}+b+d\right), C_{8}=\left(a+c+d^{\prime}\right), C_{9}=\left(a+b^{\prime}+d^{\prime}\right) .
\end{gathered}
$$

(a) (10%) Apply implication and conflict-based learning in solving the above CNF formula. Assume the decision order follows a, b, c, and then d; assume each variable is assigned 0 first and then 1 . Whenever a conflict occurs, draw the implication graph and enumerate all possible learned clauses under the Unique Implication Point (UIP) principle. (In your implication graphs, annotate each vertex with "variable = value@decision_level", e.g., " $b=$ $0 @ 2$ ", and annotate each edge with the clause that implication happens.) If there are multiple UIP learned clauses for a conflict, use the one with the UIP closest to the conflict in the implication graph.
(b) (10%) The resolution between two clauses $C_{i}=\left(C_{i}^{*}+x\right)$ and $C_{j}=\left(C_{j}^{*}+x^{\prime}\right)$ (where C_{i}^{*} and C_{j}^{*} are sub-clauses of C_{i} and C_{j}, respectively) is the process of generating their resolvent $\left(C_{1}^{*}+C_{j}^{*}\right)$. The resolution is often denoted as

$$
\frac{\left(C_{i}^{*}+x\right) \quad\left(C_{j}^{*}+x^{\prime}\right)}{\left(C_{1}^{*}+C_{j}^{*}\right)}
$$

A fact is that a learned clause in SAT solving can be derived by a few resolution steps. Show how that the learned clauses of (a) can be obtained by resolution with respect to their implication graphs.

