Logic Synthesis \& Verification, Fall 2012
 National Taiwan University

Problem Set 3

Due on $2012 / 11 / 07$ before lecture

1 [Unate Functions]

(20\%) Prove or disprove the following statements.
(a) (10%) If functions f and g are positive and negative unate, respectively, in variable x_{i}, then $f \vee \neg g$ is positive unate in variable x_{i}.
(b) (10%) Every prime cube of a unate function must be essential.

2 [Generalized Cofactor]

(20\%) Prove or disprove the following equalities.
(a) $(5 \%) ~ \neg f=g \cdot c o(\neg f, g)+\neg g \cdot \neg c o(\neg f, \neg g)$
(b) $(5 \%) \operatorname{co}(c o(f, g), h)=c o(f, g \cdot h)$
(c) $(5 \%) c o(f \cdot g, h)=c o(f, h) \cdot c o(g, h)$
(d) $(5 \%) c o\left(f^{\prime}, g\right)=c o(f, g)^{\prime}$

3 [Operation on Cube Lists]

(15\%)
(a) (5%) Given two cubes c_{1} and c_{2} over variables x_{1}, \cdots, x_{k}, how do you derive a cover for $c_{1} \wedge \neg c_{2}$?
(b) (10%) Following the algorithm in Slide 35 (for operation on cube lists), please show detailed steps in adding the cube $(0-11--0)$ to the following orthogonal cube list.

$$
\left(\begin{array}{cccccc}
0 & 1 & - & - & 1 & 1
\end{array}\right)
$$

4 [Column Covering]

(20\%)
(a) (10%) Given a Boolean matrix, devise a procedure that converts the column covering problem to a CNF formula for SAT solving. Please show your conversion with an example. (Note that the column covering needs not be minimum.)
(b) (10\%) Show an algorithm that uses SAT solving to find the minimum column cover.
There will be a 10% extra bonus if you can formulate it using partial MaxSAT, defined as follows.

Definition 1 (partial Max-SAT). Given a CNF formula $\Phi=C_{1}^{h} \wedge \cdots \wedge$ $C_{m}^{h} \wedge C_{1}^{s} \wedge \cdots \wedge C_{n}^{s}$, partial Max-SAT is the problem of finding a truth assignment that satisfies all the hard clauses $C_{1}^{h}, \ldots, C_{m}^{h}$ and simultaneously satisfies the maximum number of soft clauses $C_{1}^{s}, \ldots, C_{n}^{s}$.

5 [Prime Generation]

(25\%) Let

$$
\begin{aligned}
& F=a^{\prime} b^{\prime} e+a^{\prime} b^{\prime} c^{\prime}+a^{\prime} b c+a b c^{\prime}+a b e+a b^{\prime} c, \\
& D=a^{\prime} b c^{\prime} e^{\prime}+a b c e^{\prime}, \\
& R=a^{\prime} b^{\prime} c e^{\prime}+a^{\prime} b c^{\prime} e+a b^{\prime} c^{\prime},
\end{aligned}
$$

be the covers of the onset, don't-care set, and offset of an incompletely specified function, respectively. Use Quine-McCluskey's method to minimize it with the following steps.
(a) (5\%) Generate all prime implicants by unate recursive paradigm.
(b) (5\%) Derive the Boolean matrix. (Order the rows and columns alphabetically with $a<b<c<e$ and $x^{\prime}<x$. E.g., $a^{\prime} b^{\prime} c$ is listed before $a^{\prime} b c^{\prime}$.)
(c) (5\%) Which prime implicants are essential? Reduce the Boolean matrix based on the prime implicants.
(d) (5\%) Reduce iteratively the Boolean matrix using row equality, row dominance, column dominance, and induced n-ary essential primes until no more reduction is possible. Show intermediate steps.
(e) (5%) Solve the cyclic core, if any, using the independent set heuristic algorithm.

