Logic Synthesis \& Verification, Fall 2012

National Taiwan University

Problem Set 5

Due on 2012/12/19 before lecture

1 Weak Division

(10\%) Given an expression F and a divisor G, suppose $F=G \cdot H+R$ by weak division. Prove that H and R are unique.

2 [Kernelling and Factoring]

(20\%) Consider the expression

$$
F=a e g h+a e i+a e f h+b e f h+b e g h+b e i+c d e f h+c d e g h+c d e i .
$$

(a) Compute $\operatorname{KERNEL}(0, F)$ with literals ordered alphabetically. Draw the kernelling tree (as in the slides) and list the kernels and their corresponding co-kernels.
(b) Apply GFACTOR on F by using the largest level-0 kernels as the divisors and using weak division. (In case that there are several choices of divisors, using one of them is sufficient.)

3 [Pre-Image Computation]

(10%) Given a function vector $\boldsymbol{f}=\left(f_{1}, \ldots, f_{m}\right)$ over input variables $\boldsymbol{x}=$ $\left(x_{1}, \ldots, x_{n}\right)$, let variable y_{i} be the output variable of function f_{i}. Write a quantified formula representing the characteristic function of the pre-image of a given set $A(\boldsymbol{y})$. Show an example to justify your answer (to be clear, please expand a quantified formula to a quantifier-free formula).

4 [SDC and ODC]

(15%) Consider the Boolean network of Figure 1.
(a) Write down a Boolean formula for the SDC of the entire network.
(b) Write down a Boolean formula for the satisfiability don't cares $S D C_{4}$ of Node 4. Since $S D C_{4}$ is imposed by the fanins of Node 4, the formula should depend on variables $x_{1}, \ldots, x_{4}, y_{1}, \ldots, y_{3}$. How can you make $S D C_{4}$ only depend on y_{1}, y_{2}, y_{3} such that we can minimize Node 4 directly?
(c) Compute the observability don't cares $O D C_{4}$ of Node 4.

Fig. 1. A Boolean network, where $f_{1}=x_{1} \vee \neg x_{2}, f_{2}=\neg x_{2} \wedge x_{3}, f_{3}=\neg x_{3} \wedge \neg x_{4}$, $f_{4}=\neg y_{1} \neg y_{2} \vee y_{2} \neg y_{3} \vee y_{1} \neg y_{3}, f_{5}=y_{1} \vee y_{4}$, and $f_{6}=y_{3} y_{4}$.

5 [Don't Cares in Local Variables]

(20\%) Consider the Boolean network of Figure 1. Suppose the XDC for z_{1} is $\neg x_{1} \neg x_{2} \neg x_{3} \neg x_{4}$ and that for z_{2} is $x_{1} x_{2} x_{3} x_{4}$.
(a) Compute the don't cares D_{4} of Node 4 in terms of its local input variables y_{1}, y_{2}, and y_{3}. (Note that in general the computation of ODC may be affected by XDC especially when there exist different XDCs for different primary outputs.)
(b) Based on the computed don't cares, what is the best implementable function for Node 4 (in terms of the literal count and cube count)?

6 [Complete Flexibility]

(25%) Consider the Boolean network of Figure 1. Let $Y=\left\{y_{1}, y_{2}, y_{3}\right\}$.
(a) Suppose the XDC for z_{1} is $\neg x_{1} \neg x_{2} \neg x_{3} \neg x_{4}$ and that for z_{2} is $x_{1} x_{2} x_{3} x_{4}$. Write down the specification relation $S(X, Z)$.
(b) What is the influence relation $I\left(X, y_{4}, Z\right)$ of Node 4 ?
(c) What is the environment relation $E(X, Y)$ of Node 4?
(d) What is the complete flexibility $C F_{4}\left(Y, y_{4}\right)$ of Node 4 ?
(e) Is the previously computed don't care set D_{4} of Node 4 subsumed by $C F_{4}$?

