

3

Boolean Algebra

Reading

F. M. Brown. *Boolean Reasoning: The Logic of Boolean Equations.* Dover, 2003. (Chapters 1-3)

Boolean Algebra

Outline

- Definitions
- Examples
- Properties
- Boolean formulae and Boolean functions

Boolean Algebra

- A Boolean algebra is an algebraic structure (B, +, ·, 0, 1)
 - **B** is a set, called the *carrier*
 - + and · are binary operations defined on **B**
 - <u>0</u> and <u>1</u> are distinct members of **B**

that satisfies the following postulates (axioms):

5

7

- 1. Commutative laws
- 2. Distributive laws
- 3. Identities
- 4. Complements

Postulates of Boolean Algebra

(B, +, ⋅, <u>0</u>, <u>1</u>)

- 1. **B** is closed under + and $\forall a, b \in \mathbf{B}, a + b \in \mathbf{B}$ and $a \cdot b \in \mathbf{B}$
- 2. Commutative laws: $\forall a, b \in \mathbf{B}$ a+b=b+a $a \cdot b = b \cdot a$
- 3. Distributive laws: $\forall a, b \in \mathbf{B}$ $a + (b \cdot c) = (a + b) \cdot (a + c)$ $a \cdot (b + c) = a \cdot b + a \cdot c$
- 4. Identities: $\forall a \in \mathbf{B}$ $\underline{0} + a = a$ $\overline{1} \cdot a = a$
- 5. Complements: $\forall a \in \mathbf{B}, \exists a' \in \mathbf{B}$ s.t. a + a' = 1 $a \cdot a' = 0$ Verify that a' is unique in $(\mathbf{B}, +, \cdot, 0, 1)$.

Instances of Boolean Algebra

- Switching algebra (two-element Boolean algebra)
- The algebra of classes (subsets of a set)
- Arithmetic Boolean algebra
- □ The algebra of propositional functions

Instance 1: Switching Algebra

- A switching algebra is a two-element Boolean Algebra ({0,1}, +, ·, 0, 1) consisting of:
 - the set **B** = {0, 1}
 - two binary operations AND(·) and OR(+)
 - one unary operation NOT(')

where

OR	0	1	AND	0	1	NOT	-
0	0	1	0	0	0	0	1
1	1	1	1	0	1	1	0

8

Switching Algebra

- □ Just one of many other Boolean algebras
 - (Ex: verify that the algebra satisfies all the postulates.)
- An exclusive property (not hold for all Boolean algebras) for two-element Boolean algebra:
 x + y = 1 iff x=1 or y=1
 x · y = 0 iff x=0 or y=0

OR	0	1	AND	0	1	NOT	-
0	0	1	0	0	0	0	1
1	1	1	1	0	1	1	0

Algebra of Classes

■ Commutative laws: $\forall S_1, S_2 \in 2^S$ $S_1 \cup S_2 = S_2 \cup S_1$ $S_1 \cap S_2 = S_2 \cap S_1$ ■ Distributive laws: $\forall S_1, S_2, S_3 \in 2^S$ $S_1 \cup (S_2 \cap S_3) = (S_1 \cup S_2) \cap (S_1 \cup S_3)$ $S_1 \cap (S_2 \cup S_3) = (S_1 \cap S_2) \cup (S_1 \cap S_3)$ ■ Identities: $\forall S_1 \in 2^S$ $S_1 \cup \phi = S_1$ $S_1 \cap S = S_1$ ■ Complements: $\forall S_1 \in 2^S, \exists S_1' \in 2^S, S_1' = S \setminus S_1 \text{ s.t.}$ $S_1 \cup S_1' = S$ $S_1 \cap S_1' = \phi$

Instance 2: Algebra of Classes

Subsets of a set

 $\mathbf{B} \leftrightarrow 2^{S} \\ + \leftrightarrow \cup \\ \cdot \leftrightarrow \cap \\ \underline{0} \leftrightarrow \phi \\ 1 \leftrightarrow S$

□ *S* is a universal set $(S \neq \phi)$. Each subset of *S* is called a *class* of *S*.

I If $S = \{a, b\}$, then **B** = $\{\phi, \{a\}, \{b\}, \{a, b\}\}$

B (= 2^{s}) is closed under \cup and \cap

Algebra of Classes

Stone Representation Theorem:

Every finite Boolean algebra is isomorphic to the Boolean algebra of subsets of some finite set S

Therefore, for all finite Boolean algebra, |B| can only be 2^k for some $k \geq 1.$

- The theorem proves that finite class algebras are not specialized (i.e. no exclusive properties, e.g. x + y = 1 iff x=1 or y=1 in two-element Boolean algebra)
 - Can reason in terms of specific and easily "visualizable" concepts (union, intersection, empty set, universal set) rather than abstract operations (+, ., <u>0, 1</u>)

9

Instance 3: Arithmetic Boolean Algebra

(D_n, *lcm*, gcd, 1, n) n: product of distinct prime numbers D_n: set of all divisors of n *lcm*: least common multiple gcd: greatest common divisor 1: integer 1 (not the Boolean 1-element)
n = 30 = 2 x 3 x 5
D_n = {1, 2, 3, 5, 6, 10, 15, 30}
If we look at D_n as {φ, {2}, {3}, {5}, {2, 3}, {2, 5}, {3, 5}, {2, 3, 5}, it is easy to see that arithmetic Boolean algebra is isomorphic to the algebra of classes.
See Stone Representation Theorem

Instance 4: Algebra of Propositional Functions

□(P, ∨, ∧, □, ■)

1.

2.

3.

4.

- P: the set of propositional functions of *n* given variables
- v: disjunction symbol (OR)
- ∧: conjunction symbol (AND)
- : formula that is always false (contradiction)
- ■: formula that is always true (tautology)

Lessons from Abstraction

- Abstract mathematical objects in terms of simple rules
- A systematic way of characterizing various seemingly unrelated mathematical objects
- Abstraction trims off immaterial details and simplifies problem formulation

Properties of Boolean Algebras

□ For arbitrary elements a, b, and c in Boolean algebra

Associativity	5.	Involution
a + (b + c) = (a + b) + c		(a')' = a
$a \cdot (b \cdot c) = (a \cdot b) \cdot c$	6.	De Morgan's Laws
Idempotence		$(a + b)' = a' \cdot b'$
a + a = a		$(a \cdot b)' = a' + b'$
$a \cdot a = a$	7.	
		$a + a' \cdot b = a + b$
a + <u>1</u> = <u>1</u>		$a \cdot (a' + b) = a \cdot b$
$a \cdot \underline{0} = \underline{0}$	8.	Consensus
Absorption		$a \cdot b + a' \cdot c + b \cdot c$
$a + (a \cdot b) = a$		a · b + a′ · c
$a \cdot (a + b) = a$		(a + b) ·(a' +c) ·(b
		(a + b) ·(a' + c)

13

+ C) =

Principle of Duality

- Every identity on Boolean algebra is transformed into another identity if the following is interchanged
 - the operations + and \cdot ,
 - the elements <u>0</u> and <u>1</u>

Example:

■ a + <u>1</u> = <u>1</u> ■ a · 0 = 0

Postulates for Boolean Algebra (Revisited)

Duality in (**B**, +, ·, <u>0</u>, <u>1</u>)

- 1. **B** is closed under + and $\forall a, b \in \mathbf{B}, a + b \in \mathbf{B}$ and $a \cdot b \in \mathbf{B}$
- 2. Commutative Laws: $\forall a, b \in \mathbf{B}$ a+b=b+a $a \cdot b = b \cdot a$
- 3. Distributive laws: $\forall a, b \in \mathbf{B}$ $a + (b \cdot c) = (a + b) \cdot (a + c)$ $a \cdot (b + c) = a \cdot b + a \cdot c$
- 4. Identities: $\forall a \in \mathbf{B}$ $\underline{0} + a = a$ $1 \cdot a = a$
- 5. Complements: $\forall a \in \mathbf{B}, \exists a' \in \mathbf{B}$ s.t. $a + a' = \underline{1}$ $a \cdot a' = 0$

Two Propositions

- 1. Let a and b be members of a Boolean algebra. Then a = 0 and b = 0 iff a + b = 0 a = 1 and b = 1 iff ab = 1
 - c.f. The following two propositions are only true for two-element Boolean algebra (not other Boolean algebra)
 x+y =1 iff x=1 or y=1
 xy=0 iff x=0 or y=0

Why?

2. Let a and b be members of a Boolean algebra. Then a = b iff a'b + ab' = 0

Boolean Formulas and Boolean Functions

17

Boolean Formulas and Boolean Functions

Outline:

- Definition of Boolean formulas
- Definition of Boolean functions
- Boole's expansion theorem
- The minterm canonical form

n-variable Boolean Formulas

- Given a Boolean algebra **B** and *n* symbols $x_1, ..., x_n$, the set of all Boolean formulas on the *n* symbols is defined by:
 - 1. The elements of **B** are Boolean formulas.
 - 2. The variable symbols x_1, \ldots, x_n are Boolean formulas.
 - 3. If g and h are Boolean formulas, then so are
 - $\Box(g) + (h)$
 - $\square(g) \cdot (h)$
 - **□**(g)′
 - 4. A string is a Boolean formula if and only if it is obtained by finitely many applications of rules 1, 2, and 3.

□ There are infinitely many *n*-variable Boolean formulas.

21

n-variable Boolean Functions

- A Boolean function is a mapping that can be described by a Boolean formula.
- □ Given an *n*-variable Boolean formula F, the corresponding *n*-variable function $f: \mathbf{B}^n \rightarrow \mathbf{B}$ is defined as follows:
 - 1. If $\mathsf{F}=\mathsf{b}\in \boldsymbol{B},$ then the formula represents the constant function defined by

$$f(x_1,\ldots,x_n) = b \quad \forall ([x_1],\ldots,[x_n]) \in \mathbf{B}^n$$

2. If $F = x_i$, then the formula represents the projection function defined by

 $f(x_1,\ldots,x_n) = x_i \quad \forall ([x_1],\ldots,[x_n]) \in \mathbf{B}^n$

where $[x_k]$ denotes a valuation of variable x_k

n-variable Boolean Functions

3. If the formula is of type either G + H, GH, or G', then the corresponding *n*-variable function is defined as follows

 $\begin{array}{l} (g + h)(x_1, \dots, x_n) = g(x_1, \dots, x_n) + h(x_1, \dots, x_n) \\ (g \cdot h)(x_1, \dots, x_n) = g(x_1, \dots, x_n) \cdot h(x_1, \dots, x_n) \\ (g')(x_1, \dots, x_n) = g(x_1, \dots, x_n)' \end{array}$

for \forall ([x_1],...,[x_n]) \in **B**ⁿ

□ The number of *n*-variable Boolean functions over a finite Boolean algebra **B** is *finite*.

Example

f а 0 а 0 1 a' 1 a' а 0 а 0 1 a' a' a' 1 a' а a' 25

Boole's Expansion Theorem

Theorem 1 If $f : \mathbf{B}^n \rightarrow \mathbf{B}$ is a Boolean function, then $f(x_1,...,x_n) = x'_1 f(\underline{0},...,x_n) + x_1 f(\underline{1},...,x_n)$ for $\forall ([x_1],...,[x_n]) \in \mathbf{B}^n$

Proof. Case analysis of Boolean functions under the construction rules. Apply postulates of Boolean algebra.

The theorem holds not only for twoelement Boolean algebra (c.f. Shannon expansion)

Minterm Canonical Form

Theorem 2 A function $f: \mathbf{B}^n \rightarrow \mathbf{B}$ is Boolean if and only if it can be expressed in the minterm canonical form

$$f(X) = \sum_{A \in \{0,1\}^n} f(A) \cdot X^A$$

where $X = (x_1, \dots, x_n) \in \mathbf{B}^n$, $A = (a_1, \dots, a_n) \in \{\underline{0}, \underline{1}\}^n$, and $X^A \equiv x_1^{a_1} \cdot x_2^{a_2} \cdots x_n^{a_n}$ (with $x^{\underline{0}} \equiv x'$ and $x^{\underline{1}} \equiv x$)

Proof.

 (\Rightarrow) Follows from Boole's expansion theorem.

(<) Examine the construction rules of Boolean functions.

Example

f is not Boolean!

Proof. If f is Boolean, f can be expressed by f(x) = x f(1) + x' f(0)= x + a x' from the minterm canonical form. However, substituting x = a in the previous expression yields: f(a) = a + a a' $= a \neq 1$

х	f(x)
0	а
1	1
a'	a'
а	1

Why Study General Boolean Algebra?

General algebras can't be avoided

f = x y + x z' + x' z

- Two-element view: x, y, $z \in \{0,1\}$ and $f \in \{0,1\}$
- General algebra view: f as a member of the Boolean algebra of 3-variable Boolean functions

Why Study General Boolean Algebra?

General algebras are useful

- Two-element view: Truth tables include only 0 and 1.
- General algebra view: Truth tables contain any elements of **B**.

r	1	1	1	1		
J	K	Q	Q+		1	К
0	0	0	0		J	r.
-					0	0
0	0	1	1		0	1
6	1	0	\cap		0	1
0	1	0	0		1	0
	1	1	0		1	0
<u> </u>	1	1	0		1	1
					I	I

29

Q+

Q 0 1 Q'