Logic Synthesis and Verification

Boolean Algebra

Jie－Hong Roland Jiang江介宏

Department of Electrical Engineering National Taiwan University

Fall 2012

Boolean Algebra

\square Reading
－Outline
－Definitions
F．M．Brown．Boolean Reasoning：The
－Examples
－Properties
－Boolean formulae and Boolean functions

Boolean Algebra

\square A Boolean algebra is an algebraic structure
($\mathbf{B},+, \cdot, \underline{0}, \underline{1}$)

- B is a set, called the carrier
- + and • are binary operations defined on \mathbf{B}
$\square \underline{0}$ and $\underline{1}$ are distinct members of \mathbf{B}
that satisfies the following postulates (axioms):

1. Commutative laws
2. Distributive laws
3. Identities
4. Complements

Postulates of Boolean Algebra

(B, $+, \cdot \underline{0}, \underline{1})$

1. $\quad \mathbf{B}$ is closed under + and

$$
\forall a, b \in \mathbf{B}, a+b \in \mathbf{B} \text { and } a \cdot b \in \mathbf{B}
$$

2. Commutative laws: $\forall a, b \in \mathbf{B}$ $a+b=b+a$ $a \cdot b=b \cdot a$
3. Distributive laws: $\forall a, b \in \mathbf{B}$ $a+(b \cdot c)=(a+b) \cdot(a+c)$ $a \cdot(b+c)=a \cdot b+a \cdot c$
4. Identities: $\forall a \in \mathbf{B}$ $\frac{0}{1}+a=a$ $\underline{1} \cdot a=a$
5. Complements: $\forall a \in \mathbf{B}, \exists a^{\prime} \in \mathbf{B}$ s.t.
$a+a^{\prime}=\underline{1}$
Verify $\overline{\text { th }} a^{\prime}$ is unique in $(\mathbf{B},+, \cdot \underline{0}, \underline{1})$.

Instance 1: Switching Algebra

\square A switching algebra is a two-element Boolean Algebra ($\{0,1\},+, \cdot, 0,1$) consisting of:

- the set $\mathbf{B}=\{0,1\}$
- two binary operations $\operatorname{AND}(\cdot)$ and $\operatorname{OR}(+)$

■ one unary operation NOT(')
where

OR	0	1				
0	0	1				
1	1	1		AND	0	1
:---:	:---:	:---:				
0	0	0				
1	0	1		NOT	-	
:---:	:---:					
0	1					
1	0					

Switching Algebra

- Just one of many other Boolean algebras
- (Ex: verify that the algebra satisfies all the postulates.)
\square An exclusive property (not hold for all Boolean algebras) for two-element Boolean algebra:
$x+y=1$ iff $x=1$ or $y=1$
$x \cdot y=0$ iff $x=0$ or $y=0$

OR	0	1				
0	0	1				
1	1	1	\quad	AND	0	1
:---:	:---:	:---:				
0	0	0				
1	0	1		NOT	-	
:---:	:---:					
0	1					
1	0					

Instance 2: Algebra of Classes

\square Subsets of a set

$$
\begin{aligned}
& \mathbf{B} \leftrightarrow 2^{S} \\
& +\leftrightarrow U \\
& \cdot \leftrightarrow \cap \\
& \underline{0} \leftrightarrow \phi \\
& \underline{1} \leftrightarrow S
\end{aligned}
$$

$\square S$ is a universal set $(S \neq \phi)$. Each subset of S is called a class of S.
\square If $S=\{a, b\}$, then $\mathbf{B}=\{\phi,\{a\},\{b\},\{a, b\}\}$
$\square \mathbf{B}\left(=2^{s}\right)$ is closed under \cup and \cap

Algebra of Classes

- Commutative laws: $\forall S_{1}, S_{2} \in 2^{s}$
$S_{1} \cup S_{2}=S_{2} \cup S_{1}$
$S_{1} \cap S_{2}=S_{2} \cap S_{1}$
- Distributive Iaws: $\forall S_{1}, S_{2}, S_{3} \in 2^{s}$
$S_{1} \cup\left(S_{2} \cap S_{3}\right)=\left(S_{1} \cup S_{2}\right) \cap\left(S_{1} \cup S_{3}\right)$
$S_{1} \cap\left(S_{2} \cup S_{3}\right)=\left(S_{1} \cap S_{2}\right) \cup\left(S_{1} \cap S_{3}\right)$
- I dentities: $\forall S_{1} \in 2^{s}$
$S_{1} \cup \phi=S_{1}$
$S_{1} \cap S=S_{1}$
- Complements: $\forall S_{1} \in 2^{S}, \exists S_{1}{ }^{\prime} \in 2^{S}, S_{1}{ }^{\prime}=S \backslash S_{1}$ s.t.
$S_{1} \cup S_{1}{ }^{\prime}=S$
$S_{1} \cap S_{1}^{\prime}=\phi$

Algebra of Classes

- Stone Representation Theorem:

Every finite Boolean algebra is isomorphic to the Boolean algebra of subsets of some finite set S
Therefore, for all finite Boolean algebra, $|\mathbf{B}|$ can only be 2^{k} for some $\mathrm{k} \geq 1$.

- The theorem proves that finite class algebras are not specialized (i.e. no exclusive properties, e.g. $x+y=1$ iff $x=1$ or $y=1$ in two-element Boolean algebra)
- Can reason in terms of specific and easily "visualizable" concepts (union, intersection, empty set, universal set) rather than abstract operations ($+, \cdot, 0,1$)

Instance 3: Arithmetic Boolean Algebra
$\square\left(D_{n}, \mathrm{Icm}, \mathrm{gcd}, 1, n\right)$
n : product of distinct prime numbers
D_{n} : set of all divisors of n
lcm: least common multiple
gcd: greatest common divisor
1: integer 1 (not the Boolean 1-element)
$\square \mathrm{n}=30=2 \times 3 \times 5$
$\square D_{n}=\{1,2,3,5,6,10,15,30\}$
\square If we look at D_{n} as $\{\phi,\{2\},\{3\},\{5\},\{2,3\},\{2$, $5\}$, $\{3,5\},\{2,3,5\}\}$, it is easy to see that arithmetic Boolean algebra is isomorphic to the algebra of classes.

- See Stone Representation Theorem

Instance 4: Algebra of Propositional Functions
$\square(P, \vee, \wedge, \square$,
P : the set of propositional functions of n given variables
v : disjunction symbol (OR)
\wedge : conjunction symbol (AND)
\square : formula that is always false (contradiction)
■: formula that is always true (tautology)

Lessons from Abstraction

\square Abstract mathematical objects in terms of simple rulesA systematic way of characterizing various seemingly unrelated mathematical objects\square Abstraction trims off immaterial details and simplifies problem formulation

Properties of Boolean Algebras

\square For arbitrary elements a, b, and c in Boolean algebra

5. Involution
$\left(a^{\prime}\right)^{\prime}=a$
6. De Morgan's Laws
$(a+b)^{\prime}=a^{\prime} \cdot b^{\prime}$
$(a \cdot b)^{\prime}=a^{\prime}+b^{\prime}$
7.
$a+a^{\prime} \cdot b=a+b$
$a \cdot\left(a^{\prime}+b\right)=a \cdot b$
8. Consensus
$a \cdot b+a^{\prime} \cdot c+b \cdot c=$
$a \cdot b+a^{\prime} \cdot c$
$(a+b) \cdot\left(a^{\prime}+c\right) \cdot(b+c)=$ $(a+b) \cdot\left(a^{\prime}+c\right)$

Principle of Duality

\square Every identity on Boolean algebra is transformed into another identity if the following is interchanged
■ the operations + and .,
■ the elements $\underline{0}$ and $\underline{1}$
\square Example:
$\square a+\underline{1}=\underline{1}$
-a $\cdot \underline{0}=\underline{0}$

Postulates for Boolean Algebra (Revisited)

Duality in ($\mathbf{B},+, \cdot, \underline{0}, \underline{1}$)

1. B is closed under + and
$\forall a, b \in \mathbf{B}, a+b \in \mathbf{B}$ and $a \cdot b \in \mathbf{B}$
2. Commutative Laws: $\forall a, b \in \mathbf{B}$ $a+b=b+a$
$a \cdot b=b \cdot a$
3. Distributive laws: $\forall a, b \in \mathbf{B}$ $a+(b \cdot c)=(a+b) \cdot(a+c)$ $a \cdot(b+c)=a \cdot b+a \cdot c$
4. Identities: $\forall a \in \mathbf{B}$
$0+a=a$
$\underline{1} \cdot a=a$
5. Complements: $\forall a \in \mathbf{B}, \exists a^{\prime} \in \mathbf{B}$ s.t.
$a+a^{\prime}=\underline{1}$
$a \cdot a^{\prime}=\underline{0}$

Two Propositions

1. Let a and b be members of a Boolean algebra. Then

$$
\begin{array}{lll}
a=0 & \text { and } b=\underline{0} & \text { iff } \\
a=\underline{1} & a+b=\underline{0} \\
a n d ~ b=\underline{1} & \text { iff } & a b=\underline{1}
\end{array}
$$

c.f. The following two propositions are only true for two-element Boolean algebra (not other Boolean algebra)
$\mathrm{x}+\mathrm{y}=1$ iff $\mathrm{x}=1$ or $\mathrm{y}=1$
$x y=0$ iff $x=0$ or $y=0$
Why?
2. Let a and b be members of a Boolean algebra. Then $a=b \quad$ iff $\quad a^{\prime} b+a b^{\prime}=\underline{0}$

Boolean Formulas and Boolean Functions

-Outline:

Definition of Boolean formulas

- Definition of Boolean functions

■ Boole's expansion theorem

- The minterm canonical form

n-variable Boolean Formulas

\square Given a Boolean algebra B and n symbols x_{1}, \ldots, x_{n}, the set of all Boolean formulas on the n symbols is defined by:

1. The elements of \mathbf{B} are Boolean formulas.
2. The variable symbols x_{1}, \ldots, x_{n} are Boolean formulas.
3. If g and h are Boolean formulas, then so are
$\square(g)+(h)$
$\square(g) \cdot(h)$
$\square(\mathrm{g})^{\prime}$
4. A string is a Boolean formula if and only if it is obtained by finitely many applications of rules 1,2 , and 3 .
\square There are infinitely many n-variable Boolean formulas.

n-variable Boolean Functions

n-variable Boolean Functions

\square A Boolean function is a mapping that can be described by a Boolean formula.
\square Given an n-variable Boolean formula F, the corresponding n -variable function $\mathrm{f}: \mathbf{B}^{\mathrm{n}} \rightarrow \mathbf{B}$ is defined as follows:

1. If $F=b \in \mathbf{B}$, then the formula represents the constant function defined by $\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\mathrm{b} \quad \forall\left(\left[\mathrm{x}_{1}\right], \ldots,\left[\mathrm{x}_{\mathrm{n}}\right]\right) \in \mathbf{B}^{n}$
2. If $F=x_{i}$, then the formula represents the projection function defined by
$f\left(x_{1}, \ldots, x_{n}\right)=x_{i} \quad \forall\left(\left[x_{1}\right], \ldots,\left[x_{n}\right]\right) \in \mathbf{B}^{n}$
where $\left[x_{k}\right]$ denotes a valuation of variable x_{k}
3. If the formula is of type either $G+H, G H$, or G^{\prime}, then the corresponding n -variable function is defined as follows

$$
\begin{aligned}
& (g+h)\left(x_{1}, \ldots, x_{n}\right)=g\left(x_{1}, \ldots, x_{n}\right)+h\left(x_{1}, \ldots, x_{n}\right) \\
& (g \cdot h)\left(x_{1}, \ldots, x_{n}\right)=g\left(x_{1}, \ldots, x_{n}\right) \cdot h\left(x_{1}, \ldots, x_{n}\right) \\
& \left(g^{\prime}\right)\left(x_{1}, \ldots, x_{n}\right)=g\left(x_{1}, \ldots, x_{n}\right)^{\prime} \\
& \text { for } \forall\left(\left[x_{1}\right], \ldots,\left[x_{n}\right]\right) \in \mathbf{B}^{n}
\end{aligned}
$$

\square The number of n-variable Boolean functions over a finite Boolean algebra B is finite.

Example

$\square \mathbf{B}=\left\{\underline{0}, \underline{1}, a, a^{\prime}\right\}$
\square Variable symbols: $\{x, y\}$
ㅁ 2-variable Boolean formula:
e.g., $a^{\prime} x+a y^{\prime}$

- 2-variable Boolean function: $\mathrm{f}: \mathbf{B}^{2} \rightarrow \mathbf{B}$
\square Domain $\mathbf{B}^{2}=\{(\underline{0}, \underline{0})$, $(\underline{0}, \underline{1}), \ldots,(a, a)\}$

\mathbf{x}	$\underline{\mathbf{y}}$	\mathbf{f}
$\underline{0}$	$\underline{0}$	a
$\underline{\underline{0}}$	$\underline{1}$	$\underline{0}$
$\underline{0}$	a^{\prime}	a
$\underline{0}$	a	$\underline{0}$
$\underline{1}$	$\underline{0}$	$\underline{1}$
$\underline{1}$	$\underline{1}$	a^{\prime}
$\underline{\underline{1}}$	a^{\prime}	$\underline{1}$
$\underline{\underline{1}}$	a	a^{\prime}
a	$\underline{0}$	a
a	$\underline{1}$	$\underline{0}$
a	a^{\prime}	$\underline{\mathrm{a}}$
a	a	$\underline{0}$
a^{\prime}	$\underline{0}$	$\underline{1}$
a^{\prime}	$\underline{1}$	a^{\prime}
a^{\prime}	a^{\prime}	$\underline{1}$
a^{\prime}	a	a^{\prime}

Boole's Expansion Theorem

Theorem 1 If $\mathrm{f}: \mathbf{B}^{\boldsymbol{n}} \rightarrow \mathbf{B}$ is a Boolean function, then

$$
\begin{aligned}
& f\left(x_{1}, \ldots, x_{n}\right)=x_{1}^{\prime} f\left(0, \ldots, x_{n}\right)+x_{1} f\left(\underline{1}, \ldots, x_{n}\right) \\
& \text { for } \forall\left(\left[x_{1}\right], \ldots,\left[x_{n}\right]\right) \in \mathbf{B}^{\mathbf{n}}
\end{aligned}
$$

Proof. Case analysis of Boolean functions under the construction rules. Apply postulates of Boolean algebra.
-The theorem holds not only for twoelement Boolean algebra (c.f. Shannon expansion)

Minterm Canonical Form

Example

Theorem 2 A function $f: \mathbf{B}^{n} \rightarrow \mathbf{B}$ is Boolean if and only if it can be expressed in the minterm canonical form

$$
f(X)=\sum_{A \in\left\{0,11^{n}\right.} f(A) \cdot X^{A}
$$

where $X=\left(x_{1}, \ldots, x_{n}\right) \in B^{n}, A=\left(a_{1}, \ldots, a_{n}\right) \in\{\underline{0}, \underline{1}\}^{n}$, and $X^{A} \equiv x_{1}{ }^{\mathrm{a} 1} \cdot \mathrm{x}_{2}{ }^{\text {a2 }} \cdots \mathrm{x}_{\mathrm{n}}{ }^{\text {an }}$ (with $\mathrm{x}-\equiv \mathrm{x}^{\prime}$ and $\mathrm{x}^{\underline{1}} \equiv \mathrm{x}$)

Proof
(\Rightarrow) Follows from Boole's expansion theorem.
(\Leftrightarrow) Examine the construction rules of Boolean functions.

Why Study General Boolean Algebra?

Why Study General Boolean Algebra?
\square General algebras can't be avoided $f=x y+x z^{\prime}+x^{\prime} z$
\square Two-element view: $x, y, z \in\{0,1\}$ and $f \in\{0,1\}$
$■$ General algebra view: f as a member of the Boolean algebra of 3-variable Boolean functions
\square General algebras are useful
■ Two-element view: Truth tables include only 0 and 1 .

- General algebra view: Truth tables contain any elements of \mathbf{B}.

J	K	Q	$\mathrm{Q}+$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
..

J	K	$\mathrm{Q}+$
0	0	Q
0	1	0
1	0	1
1	1	Q^{\prime}

