
1

Logic Synthesis and
Verification

Jie-Hong Roland Jiang
江介宏

Department of Electrical Engineering
National Taiwan University

Fall 2012

2

Course Info
Instructor

Jie-Hong Roland Jiang
email: jhjiang@cc.ee.ntu.edu.tw
office: 242, EEII
phone: (02)3366-3685
office hour: 17:30-18:30 Wed and 17:00-18:00 Thu

Course webpage
http://cc.ee.ntu.edu.tw/~jhjiang/instruction/courses/fall12lsv/lsv.
html

Email contact
Your official NTU email addresses will be used for future contact

3

Grading Policy
Grading rules

 Homework 30%
 Programming assignments 10%
 Midterm 30%
 Project 30%

 Presentation 5%
 Final report 25%

Homework
 discussions encouraged, but write down solutions individually and separately
 due one week from the problem set is out except for programming assignments

(due date will be specified)
 20% off per day for late homework
 6 homework assignments (peer-review grading)

Midterm
 in-class exam (schedule may/may not differ from the academic calendar)

Project
 oral presentation, final report

Report grading errors within one week after receiving notice.
Plagiarism and cheating are strictly prohibited (no credits for plagiarism).

4

References
 J.-H. R. Jiang and S. Devadas. Logic Synthesis in a Nutshell.

(Chapter 6 of Electronic Design Automation: Synthesis,
Verification, and Test), Elsevier 2009.
 Downloadable handout

 F. M. Brown. Boolean Reasoning: The Logic of Boolean Equations.
Dover, 2003.
 Used in the introduction to Boolean algebra

 S. Hassoun and T. Sasao. Logic Synthesis and Verification.
Springer, 2001.

 G. D. Hachtel and F. Somenzi. Logic Synthesis and Verification
Algorithms. Springer, 2006.

 W. Kunz and D. Stoffel. Reasoning in Boolean Networks: Logic
Synthesis and Verification Using Testing Techniques. Springer,
1997.

5

References (cont’d)
 Papers on course webpage

 Conference Proceedings
 ACM/IEEE Design Automation Conference (DAC)
 IEEE/ACM Int’l Conf. Computer-Aided Design (ICCAD)
 DATE, ASP-DAC
 Computer-Aided Verification (CAV)
 TACAS, FMCAD

 Journals
 IEEE Trans. on Computer-Aided Design
 IEEE Trans. on Computers

6

Introduction

Reading:
Logic Synthesis in a Nutshell

Section 1

7

Evolving Information Technology
 The Industrial Revolution

 Application of power-driven machinery to manufacturing
(1750 – 1830)

 IT Revolution
 Application of electronic devices to information

processing
(1950 – present)

 Electronic systems evolve in a fascinating speed
 Design challenges emerge and design paradigms shift in

this evolution
 EDA tools change along the evolution

8

Electronic Design Automation
 EDA tools aim at automating electronic system design and

optimizing most design instances (not just some specific
design)

 EDA is a field with rich applications from electrical
engineering, computer science, and mathematics
 Electronics, circuit theory, communication, DSP, device

physics, …
 Algorithms, complexity theory, automata theory, logics,

games, …
 Probability, statistics, algebra, numerical analysis, matrix

computation, …

 EDA is one of the most advanced areas in practical
computer science
 Many problems require sophisticated mathematical modeling
 Many algorithms are computationally hard, and require

advanced heuristics to work on realistic problem sizes

 EDA is a very good workplace for software engineers
 E.g., modern SAT solvers (GRASP, Chaff, BerkMin, MiniSAT) are

developed in the field of EDA

9

VLSI Design Flow & Abstraction Levels

System Level

Register Transfer Level

Gate Level

Transistor Level

Layout Level

Mask Level

Verification

Design

10

System Level
 Abstract algorithmic description of high-level behavior

 E.g., C-programming language

 abstract because it does not contain any implementation
details for timing or data

 efficient to get a compact execution model as first design draft
 difficult to maintain throughout project because no link to

implementation

Port*
compute_optimal_route_for_packet(Packet_t *packet,

Channel_t *channel)
{
static Queue_t *packet_queue;

packet_queue = add_packet(packet_queue, packet);
...

}

by courtesy of A. Kuehlmann

11

Register Transfer Level
 Cycle accurate model “close” to the hardware

implementation
 bit-vector data types and operations as abstraction from bit-

level implementation
 sequential constructs (e.g. if - then - else, while loops) to

support modeling of complex control flow
module mark1;
reg [31:0] m[0:8192];
reg [12:0] pc;
reg [31:0] acc;
reg[15:0] ir;
always

begin
ir = m[pc];
if(ir[15:13] == 3b’000)

pc = m[ir[12:0]];
else if (ir[15:13] == 3’b010)

acc = -m[ir[12:0]];
...

end
endmodule by courtesy of A. Kuehlmann 12

Gate Level
 Model on finite-state machine level

 models function in Boolean logic using registers and gates
 various delay models for gates and wires

1ns

4ns3ns

5ns

by courtesy of A. Kuehlmann

13

Transistor Level
Model on CMOS transistor level

 Binary switches used for function modeling
E.g., in functional equivalence checking

 Differential equations used for circuit simulation
E.g., in timing/waveform analysis

by courtesy of A. Kuehlmann 14

Layout Level
 Transistors and wires are laid out as polygons in different

technology layers such as diffusion, poly-silicon, metal, etc.

by courtesy of A. Kuehlmann

15

Integrated System Design

R
el

at
iv

e
E

ffo
rt

Project Time

System

RTL

Logic

Transistor

by courtesy of A. Kuehlmann 16

General Design Approaches

Divide and conquer !
 partition design problem into many sub-problems which

are manageable
 define mathematical model for sub-problem and find an

algorithmic solution
beware of model limitations and check them !

 implement algorithm in individual design tools, define
and implement general interfaces between the tools

 implement checking tools for boundary conditions
 concatenate design tools to general design flows which

can be managed
 see what doesn’t work and start over

by courtesy of A. Kuehlmann

17

Full Custom Design Flow
 Application: ultra-high performance designs

 general-purpose processors, DSPs, graphic chips, internet
routers, game processors, etc.

 Target: very large markets with high profit margins
 e.g. PC business

 Complexity: very complex and labor intense
 involving large teams
 high up-front investments and relatively high risks

 Role of logic synthesis:
 limited to components that are not performance critical or that

might change late in design cycle (due to design bugs found
late)
 control logic
 non-critical data-path logic

 bulk of data-path components and fast control logic are
manually crafted for optimal performance

by courtesy of A. Kuehlmann 18

Full Custom Design Flow

ISA Specification

RTL Spec

Gate Level Netlist

Transistor Level Circuit

Layout

Circuit Simulation

Simulation

Design Rule Checker

Formal
Equivalence

Checking

Simulation

Logic Synthesis

Manual or
Semi-automatic

Design

Extract&Compare

by courtesy of A. Kuehlmann

(incomplete picture)

19

ASIC Design Flow
 Application: general IC market

 peripheral chips in PCs, toys, handheld devices, etc.
 Target: small to medium markets, tight design

schedules
 e.g. consumer electronics

 Complexity of design: standard design style,
quite predictable
 standard flows, standard off-the-shelf tools

 Role of logic synthesis:
 used on large fraction of design except for special blocks

such as RAM’s, ROM’s, analog components

by courtesy of A. Kuehlmann 20

ASIC Design Flow

Informal Specification

RTL Spec

Gate Level Netlist

Modified Gate Level Netlist Static Timing Analysis

Formal
Equivalence

Checking

Simulation

Logic Synthesis

Manual Changes
to fix timing ASIC Foundry

Test Logic Insertion

(incomplete picture)

21

What Is Logic Synthesis About?

D

x y


Given: Finite-State Machine F(Q,X,Y,,) where:

Q: Set of states
X: Input alphabet
Y: Output alphabet
: X  Q  Q (next-state function)
: X  Q  Y (output function)

Target: Circuit C(G, W) where:

G: set of circuit components g {Boolean gates,
flip-flops, etc.}

W: set of wires connecting G



by courtesy of A. Kuehlmann 22

Why Is Logic Synthesis Useful?
 Core logic optimization technique in today's EDA

flows for IC and system design

 Broad applications in hardware model checking,
software verification, program synthesis, and
other areas besides circuit optimization
 Synthesis and verification are two sides of the same coin

 Good subject to get acquainted to Boolean
reasoning

23

Brief History
 1847: Boole’s “algebra of logic”
 1937: Shannon’s M.S. thesis, A Symbolic Analysis of Relay and Switching

Circuits
 1950s: Quine’s minimization theory of Boolean formulas
 1958: Kilby’s invention of IC
 1960s: ATPG D-Algorithm for Boolean reasoning
 1970s: two-level logic minimization for PLA,

 IBM introduced formal equivalence checking in computer design in 1978 and
logic synthesis for gate array based design in 1979

 1980s: multi-level logic minimization, FSM optimization, technology
mapping, BDD, symbolic equivalence checking
 Synopsys founded in 1986

 first product “remapper” between standard cell libraries
 1990s: sequential circuit optimization, don’t care computation, FPGA

synthesis, SAT, low-power synthesis, physical-aware logic synthesis,
hardware property checking
 More companies founded including Ambit, Compass, Synplicity. Magma,

Monterey, ...
 2000s: large-scale logic synthesis, synthesis for reliability, synthesis for

emerging technologies, statistical analysis and optimization

24

Course Outline
 Representation of Boolean functions and basic algorithms

 Boolean functions, formulas, circuits, SOP and POS representations, BDDs
 Efficient data structures and algorithms for Boolean reasoning

 Combinational circuit optimization
 Technology-independent two-level/multi-level logic optimization
 Technology mapping

 Timing analysis and optimization

 Sequential circuit optimization
 Clock skewing, retiming and resynthesis

 Formal verification
 Reachability analysis
 Formal equivalence checking
 Safety property checking

 Logic synthesis and verification tool
 ABC

