Logic Synthesis and
Verification

Jie-Hong Roland Jiang
LR

/\\
Department of Electrical Engineering I\
National Taiwan University

Fall 2012

Course Info

Jie-Hong Roland Jiang

email:
office: 242, EEII
phone: (02)3366-3685

office hour: 17:30-18:30 Wed and 17:00-18:00 Thu

http://cc.ee.ntu.edu.tw/—jhjiang/instruction/courses/fall12Isv/Isv.

html

Your official NTU email addresses will be used for future contact

Grading Policy

Homework 30%
Programming assignments 10%
Midterm 30%
Project 30%
O Presentation 5%
O Final report 25%

Homework

O discussions encouraged, but write down solutions individually and separately

O due one week from the problem set is out except for programming assignments

(due date will be specified)

O 20% off per day for late homework

O 6 homework assignments (peer-review grading)
Midterm

O in-class exam (schedule may/may not differ from the academic calendar)
Project

O oral presentation, final report

Report grading errors within one week after receiving notice.
Plagiarism and cheating are strictly prohibited (no credits for plagiarism).

References

O J.-H. R. Jiang and S. Devadas. Logic Synthesis in a Nutshell.
(Chapter 6 of Electronic Design Automation: Synthesis,
Verification, and Test), Elsevier 2009.

B Downloadable handout

O F. M. Brown. Boolean Reasoning: The Logic of Boolean Equations.
Dover, 2003.

B Used in the introduction to Boolean algebra

O S. Hassoun and T. Sasao. Logic Synthesis and Verification.
Springer, 2001.

O G. D. Hachtel and F. Somenzi. Logic Synthesis and Verification
Algorithms. Springer, 2006.

O W. Kunz and D. Stoffel. Reasoning in Boolean Networks: Logic
Synthesis and Verification Using Testing Techniques. Springer,
1997.

References (cont'd)
[0 Papers on course webpage

0 Conference Proceedings
B ACM/IEEE Design Automation Conference (DAC)
B |IEEE/ACM Int'l Conf. Computer-Aided Design (ICCAD)
B DATE, ASP-DAC
B Computer-Aided Verification (CAV)
B TACAS, FMCAD

O Journals
B |IEEE Trans. on Computer-Aided Design
B |IEEE Trans. on Computers

Introduction I
|

Reading:
Logic Synthesis in a Nutshell
Section 1

Evolving Information Technology

O The Industrial Revolution

B Application of power-driven machinery to manufacturing
(1750 - 1830)

O IT Revolution

B Application of electronic devices to information
processing

(1950 - present)

[Electronic systems evolve in a fascinating speed

B Design challenges emerge and design paradigms shift in
this evolution

B EDA tools change along the evolution

Electronic Design Automation

O EDA tools aim at automating electronic system design and
8pti_mi§ing most design instances (not just some specific
esign

O EDA is a field with rich applications from electrical
englneerlng computer science, and mathematics
Electronics, circuit theory, communication, DSP, device
physics, ...
m Algorithms, complexity theory, automata theory, logics,
games, ...
® Probability, statistics, algebra, numerical analysis, matrix
computation, ... ’

O EDA is one of the most advanced areas in practical
computer science
B Many problems require sophisticated mathematical modeling

® Many algorithms are computationally hard, and require
advanced heuristics to work on realistic problem sizes

O EDA is a very good workplace for software engineers

B E.g., modern SAT solvers (GRASP, Chaff, BerkMin, MiniSAT) are
developed in the field of EDA

VLSI Design Flow & Abstraction Levels

i | | |
| |

Design

Qo =

Verification

%@gﬁ ——

System Level

O Abstract algorithmic description of high-level behavior
B E.g., C-programming language
Port*
compute_optimal_route_for_packet(Packet_t *packet,
Channel_t *channel)
{

static Queue_t *packet_queue;
packet_queue = add_packet(packet_queue, packet);

T

B abstract because it does not contain any implementation
details for timing or data

m efficient to get a compact execution model as first design draft

m difficult to maintain throughout project because no link to
implementation

by courtesy of A. Kuehimann 10

Register Transfer Level

O Cycle accurate model “close” to the hardware
implementation
B bit-vector data types and operations as abstraction from bit-
level implementation
B sequential constructs (e.g. if - then - else, while loops) to
support modeling of complex control flow
module markl;
reg [31:0] m[0:8192];
reg [12:0] pc;
reg [31:0] acc;
reg[15:0] ir;
always
begin
ir = m[pc];
if(ir[15:13] == 3b’000)
pc = m[ir[12:0]];
else if (ir[15:13] == 37b010)
acc = -m[ir[12:0]];

end
endmodule by courtesy of A, Kuehimann 11

Gate Level

O Model on finite-state machine level
B models function in Boolean logic using registers and gates
B various delay models for gates and wires

@MS
@3[15 @4”3

3 R

by courtesy of A. Kuehimann 12

Transistor Level

0 Model on CMOS transistor level
B Binary switches used for function modeling
OE.g., in functional equivalence checking
m Differential equations used for circuit simulation
OE.g., in timing/waveform analysis

1t

by courtesy of A. Kuehimann 13

Layout Level

O Transistors and wires are laid out as polygons in different
technology layers such as diffusion, poly-silicon, metal, etc.

by courtesy of A. Kuehimann 14

Integrated System Design

Logic
RTL Transistor

Relative Effort

System

Project Time

by courtesy of A. Kuehimann 15

General Design Approaches

O Divide and conquer !

B partition design problem into many sub-problems which
are manageable

B define mathematical model for sub-problem and find an
algorithmic solution
O
B implement algorithm in individual design tools, define
and implement general interfaces between the tools
B implement checking tools for boundary conditions

B concatenate design tools to general design flows which
can be managed

B see what doesn’'t work and start over

by courtesy of A. Kuehimann 16

Full Custom Design Flow

O Application: ultra-high performance designs

B general-purpose processors, DSPs, graphic chips, internet
routers, game processors, etc.

O Target: very large markets with high profit margins
B e.g. PC business

O Complexity: very complex and labor intense
B involving large teams
B high up-front investments and relatively high risks

O Role of logic synthesis:

B |imited to components that are not performance critical or that
might change late in design cycle (due to design bugs found
late)

O control logic
O non-critical data-path logic

Full Custom Design Flow

(incomplete picture)
Logic Synthesis ‘ ISA Specification }—» Simulation
RTL Spec Simulation
‘ Gate Le%al Netlist Formal
Equivalence
@ Checking

Transistor Level Circuit

!

Circuit Simulation

— Extract&Compare

L
B bulk of data-path components and fast control logic are Manual or ‘ ayout Design Rule Checker
manually crafted for optimal performance Semi-automatic
Design
by courtesy of A. Kuehimann 17 by courtesy of A. Kuehimann 18
ASIC Design Flow ASIC Design Flow
O Application: general IC market (incomplete picture)
B peripheral chips in PCs, toys, handheld devices, etc. S
O Target: small to medium markets, tight design Logic Synthesis | el & gEEiiEEia
schedules : .
; RTL Spec Simulation
B e.g. consumer electronics i
O Complexity of design: standard design style, T —— 7 F_O"TI‘a'
quite predictable I g%';’?k?:;e

B standard flows, standard off-the-shelf tools
[0 Role of logic synthesis:

B used on large fraction of design except for special blocks
such as RAM’'s, ROM’s, analog components

by courtesy of A. Kuehimann 19

‘ Modified Gate Level Netlist

Manual Changes ﬂ

to fix timing ‘ ASIC Foundry

)

Static Timing Analysis
Test Logic Insertion

20

What Is Logic Synthesis About?

Given: Finite-State Machine F(Q,X,Y,8,A) where:

Q: Set of states

X: Input alphabet

Y: Output alphabet

8: XxQ — Q (next-state function)
A XxQ—Y (output function)

. 3

Target: Circuit C(G, W) where:

= G: set of circuit components g € {Boolean gates,
flip-flops, etc.}

Why Is Logic Synthesis Usetul?

0 Core logic optimization technique in today's EDA
flows for IC and system design

0 Broad applications in hardware model checking,
software verification, program synthesis, and
other areas besides circuit optimization

B Synthesis and verification are two sides of the same coin

[0 Good subject to get acquainted to Boolean
reasoning

I W: set of wires connecting G
by courtesy of A. Kuehimann 21 22
Brieft History Course Outline
I I
O 1847: Boole’s “algebra of logic” O Representation of Boolean functions and basic algorithms
O 1937: Shannon’s M.S. thesis, A Symbolic Analysis of Relay and Switching ® Boolean functions, formulas, circuits, SOP and POS representations, BDDs
Circuits ® Efficient data structures and algorithms for Boolean reasoning
O 1950s: Quine’s minimization theory of Boolean formulas
O 1958: Kilby's invention of IC O Combinational circuit optimization
O 1960s: ATPG D-Algorithm for Boolean reasoning B Technology-independent two-level/multi-level logic optimization
) . Lo . B Technology mapping
O 1970s: two-level logic minimization for PLA,
B IBM introduced formal equivalence checking in computer design in 1978 and P : P :
logic synthesis for gate array based design in 1979 O Timing analysis and optimization
O 1980s: multi-level logic minimization, FSM optimization, technology

mapping, BDD, symbolic equivalence checking
B Synopsys founded in 1986
O first product “remapper” between standard cell libraries
O 1990s: sequential circuit optimization, don't care computation, FPGA
synthesis, SAT, low-power synthesis, physical-aware logic synthesis,
hardware property checking
B More companies founded including Ambit, Compass, Synplicity. Magma,
Monterey, ...
O 2000s: large-scale logic synthesis, synthesis for reliability, synthesis for
emerging technologies, statistical analysis and optimization

23

O Sequential circuit optimization
B Clock skewing, retiming and resynthesis

O Formal verification
B Reachability analysis
B Formal equivalence checking
m Safety property checking

O Logic synthesis and verification tool
= ABC

24

