
Introduction
to

Logic Synthesis with ABC

Alan Mishchenko

UC Berkeley

2

Overview

• (1) Problems in logic synthesis
– Representations and computations

• (2) And-Inverter Graphs (AIGs)
– The foundation of innovative synthesis

• (3) AIG-based solutions
– Synthesis, mapping, verification

• (4) Introduction to ABC
– Differences, fundamentals, programming

• (5) Programming assignment

3

(1) Problems in Synthesis

• What are the objects to be “synthesized”?
– Logic structures
– Boolean functions (with or without don’t-cares)
– State machines, relations, sets, etc.

• How to represent them efficiently?
– Depends on the task to be solved
– Depends on the size of an object

• How to create, transform, minimize the representations?
– Multi-level logic synthesis
– Technology mapping

• How to verify the correctness of the design?
– Gate-level equivalence checking
– Property checking
– Etc.

4

Terminology

• Logic function (e.g. F = ab+cd)
– Variables (e.g. b)
– Minterms (e.g. abcd)
– Cube (e.g. ab)

• Logic network
– Primary inputs/outputs
– Logic nodes
– Fanins/fanouts
– Transitive fanin/fanout cone
– Cut and window (defined later) Primary inputsPrimary inputs

Primary outputsPrimary outputs

FaninsFanins

FanoutsFanouts
TFOTFO

TFITFI

5

Logic (Boolean) Function
• Completely specified

logic function

• Incompletely specified
logic function

00 01 11 10

00 0 0 1 0
01 0 0 1 0
11 1 1 1 1
10 0 0 1 0

00 01 11 10

00 0 0 1 0
01 0

11 1 1 1

10 0 0 1 0

00 01 11 10

00 0 0 1 0
01 0 0 0 0
11 1 1 1 0
10 0 0 1 0

00 01 11 10

00 1 1 0 1
01 1 0 0 0
11 0 0 0 0
10 1 1 0 1

00 01 11 10

00 0 0 0 0
01 0 1 1 1
11 0 0 0 1
10 0 0 0 0

On-set Off-set DC-set

abab

cdcd

cdcd
abab

6

Relations
• Relation (a1,a2) (b1,b2)

– (0,0) (0,0)
– (0,1) (1,0)(0,1)
– (1,0) (1,1)
– (1,1) (1,0)

• FSM

00 01 11 10

00 1 0 0 0
01 0 1 0 0
11 0 0 0 1
10 0 1 1 0

00 01 11 10

00 1 1 0
01 1 1 1
11

10 1 0 0

a1 a2a1 a2

b1 b2b1 b2

01010000

1010

Current Current
statestate

Next Next
statestate

Characteristic function

7

Representation Zoo
Find each of these representations?
• Truth table (TT)
• Sum-of-products (SOP)
• Product-of-sums (POS)
• Binary decision diagram (BDD)
• And-inverter graph (AIG)
• Logic network (LN)

abcd F

0000 0

0001 0

0010 0

0011 1

0100 0

0101 0

0110 0

0111 1

1000 0

1001 0

1010 0

1011 1

1100 1

1101 1

1110 1

1111 1

F = F = ab+cdab+cd

F = (F = (a+c)(a+d)(b+c)(b+da+c)(a+d)(b+c)(b+d))

1100

aa

bb

cc

dd

FF aa bb cc dd

FF

aa bb cc dd

FF

abab

x+cd
x+cd

8

Representation Overview
• TT are the natural representation of logic functions

– Not practical for large functions
– Still good for functions up to 16 variables

• SOP is widely used in synthesis tools since 1980’s
– More compact than TT, but not canonical
– Can be efficiently minimized (SOP minimization by Espresso, ISOP

computation) and translated into multi-level forms (algebraic factoring)
• BDD is a useful representation discovered around 1986

– Canonical (for a given function, there is only one BDD)
– Very good, but only if (a) it can be constructed, (b) it is not too large
– Unreliable (non-robust) for many industrial circuits

• AIG is an up-and-coming representation!
– Compact, easy to construct, can be made “canonical” using a SAT solver
– Unifies the synthesis/mapping/verification flow
– The main reason to give this talk

9

Problem Size

Time1950-1970 1980 1990 2000

CNF
TT

SOP BDD

Historical Perspective

AIG
16

50

100

100000

Espresso,
MIS, SIS

SIS, VIS,
MVSIS

ABC

10

What Representation to Use?
• For small functions (up to 16 inputs)

– TT works the best (local transforms, decomposition, factoring, etc.)
• For medium-sized functions (16-100 inputs)

– In some cases, BDDs are still used (reachability analysis)
– Typically, it is better to represent as AIGs

• Translate AIG into CNF and use SAT solver for logic manipulation
– Sometimes need interpolation or SAT assignment enumeration

• For large industrial circuits (>100 inputs, >10,000 gates)
– Traditional LN representation is not efficient
– AIGs work remarkably well

• Lead to efficient synthesis
• Are a natural representation for technology mapping
• Easy to translate into CNF for SAT solving
• Etc.

11

What are Typical Transformations?

• Typical transformations of representations
– For SOP, minimize cubes/literals
– For BDD, minimize nodes/width
– For AIG, restructure, minimize nodes/levels
– For LN, restructure, minimize area/delay

12

Algorithmic Paradigms

• Divide-and-conquer
– Traversal, windowing, cut computation

• Guess-and-check
– Bit-wise simulation

• Reason-and-prove
– Boolean satisfiability

13

Traversal
• Traversal is visiting nodes in

the network in some order

• Topological order visits
nodes from PIs to POs
– Each node is visited after its

fanins are visited

• Reverse topological order visits
nodes from POs to PIs
– Each node is visited after its

fanouts are visited Primary inputsPrimary inputs

Primary outputsPrimary outputs

Traversal in a topological orderTraversal in a topological order

44

11

33

88

77

55

6622

14

Windowing

• Definition
– A window for a node is the

node’s context, in which an
operation is performed

• A window includes
– k levels of the TFI
– m levels of the TFO
– all re-convergent paths

between window PIs and
window POs

Window POs

Window PIs

k = 3

m = 3

Pivot node

15

Structural Cuts in AIG

A cut of a node n is a set of
nodes in transitive fan-in

such that
every path from the node to PIs
is blocked by nodes in the cut.

A k-feasible cut means the size
of the cut must be k or less.

a b c

p q

n

The set {p, b, c} is a 3-feasible cut of
node n. (It is also a 4-feasible cut.)

k-feasible cuts are important in FPGA mapping because the logic between
root n and the cut nodes {p, b, c} can be replaced by a k-LUT

16

Cut Computation

a b c

p q
{ {p}, {a, b} } { {q}, {b, c} }

{ {a} } { {b} } { {c} }

n

{ {n}, {p, q}, {p, b, c}, {a, b, q}, {a, b, c} }

The set of cuts of a node is a ‘cross product’ of the sets of cuts of its children.
Any cut that is of size greater than k is discarded.

Computation is
done bottom-up

(P. Pan et al, FPGA ’98; J. Cong et al, FPGA ’99)

k Cuts per
node

4 6
5 20
6 80
7 150

17

Bitwise Simulation
• Assign particular (or random) values

at the primary inputs
– Multiple simulation patterns are

packed into 32- or 64-bit strings

• Perform bitwise simulation at each
node
– Nodes are ordered in a topological

order

• Works well for AIG due to
– The uniformity of AND-nodes
– Speed of bitwise simulation
– Topological ordering of memory used

for simulation information

aa bb cc dd

FF

0

1

1

1

1

0

0

1

0

0

1

0

1

0

1

1

0

0

1

0

0

0

0

1

0

0

1

1

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

18

Boolean Satisfiability

• Given a CNF formula (x), satisfiability problem is
to prove that (x) 0, or to find a counter-example
x’ such that (x’) 1

• Why this problem arises?
– If CNF were a canonical representation (like BDD), it would be

trivial to answer this question.
– But CNF is not canonical. Moreover, CNF can be very

redundant, so that a large formula is, in fact, equivalent to 0.
– Looking for a satisfying assignment can be similar to searching

for a needle in the hay-stack.
– The problem may be even harder, if there is no needle there!

19

Example (Deriving CNF)

(a + b + c)

(a + b + c’)

(a’ + b + c’)

(a + c + d)

(a’ + c + d)

(a’ + c + d’)

(b’ + c’ + d’)

(b’ + c’ + d)

00 01 11 10

00 0 0 0 0
01 0 1 0 0
11 0 0 0 0
10 0 0 0 0

ab

cd

Cube: bcd’
Clause: b’ + c’ + d

CNF

20

SAT Solver

• The best SAT solver is MiniSAT
(http://minisat.se/)
– Efficient (won many competitions)
– Simple (600 lines of code)
– Easy to modify and extend
– Integrated into ABC

• SAT solver types
– CNF-based, circuit-based
– Complete, incomplete
– DPLL, saturation, etc.

• A lot of magic is used to build an
efficient SAT solver
– Two literal clause watching
– Conflict analysis with clause

recording
– Non-chronological backtracking
– Variable ordering heuristics
– Random restarts, etc

• Applications in EDA
– Verification

• Equivalence checking
• Model checking

– Synthesis
• Circuit restructuring
• Decomposition
• False path analysis

– Routing

21

Example (SAT Solving)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

1
2
3
4
5
6
7
8

a(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)

b

c

d d

b

c

d d

c

d(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)

Courtesy Karem Sakallah, University of Michigan 22

(2) And-Inverter Graphs (AIG)

• Definition and examples
• Several simple tricks that make AIGs work
• Sequential AIGs
• Unifying representation
• A typical synthesis application: AIG rewriting

23

AIG Definition and Examples

cd
ab 00 01 11 10

00 0 0 1 0

01 0 0 1 1

11 0 1 1 0

10 0 0 1 0

F(a,b,c,d) = ab + d(ac’+bc)

F(a,b,c,d) = ac’(b’d’)’ + c(a’d’)’ =
ac’(b+d) + bc(a+d)

cd
ab 00 01 11 10

00 0 0 1 0

01 0 0 1 1

11 0 1 1 0

10 0 0 1 0

6 nodes

4 levels

7 nodes

3 levels

b ca c

a b d

a c b d b c a d

AIG is a Boolean network composed of twoAIG is a Boolean network composed of two--input input ANDsANDs and inverters.and inverters.

24

Three Simple Tricks
• Structural hashing

– Makes sure AIG is stored in a compact form
– Is applied during AIG construction

• Propagates constants
• Makes each node structurally unique

• Complemented edges
– Represents inverters as attributes on the edges

• Leads to fast, uniform manipulation
• Does not use memory for inverters
• Increases logic sharing using DeMorgan’s rule

• Memory allocation
– Uses fixed amount of memory for each node

• Can be done by a simple custom memory manager
• Even dynamic fanout manipulation is supported!

– Allocates memory for nodes in a topological order
• Optimized for traversal in the same topological order
• Small static memory footprint for many applications

– Computes fanout information on demand

a b

c d

a b

c d

Without hashingWithout hashing

With hashingWith hashing

25

Sequential AIGs
• Sequential networks have memory elements in

addition to logic nodes
– Memory elements are modeled as D-flip-flops
– Initial state {0,1,x} is assumed to be given

• Several ways of representing sequential AIGs
– Additional PIs and POs in the combinational AIG
– Additional register nodes with sequential structural hashing

• Sequential synthesis (in particular, retiming)
annotates registers with additional information
– Takes into account register type and its clock domain

26

AIG: A Unifying Representation

• An underlying data structure for various computations
– Rewriting, resubstitution, simulation, SAT sweeping, induction,

etc. are based on the same AIG manager

• A unifying representation for the whole flow
– Synthesis, mapping, verification use the same data structure
– Allows multiple structures to be stored and used for mapping

• The main functional representation in ABC
– A foundation of new logic synthesis

27

(3) AIG-Based Solutions

• Synthesis
• Mapping
• Verification

28

Design Flow

System Specification

RTLRTL

Logic synthesisLogic synthesis

Technology mappingTechnology mapping

Physical synthesisPhysical synthesis

Manufacturing

ABC V
erification

V
erification

29

Combinational Synthesis

a b a c

Subgraph 1

b c
a

Subgraph 2

• Pre-computing AIG subgraphs
– Consider function f = abc

a c
b

Subgraph 3

Rewriting AIG subgraphs
Rewriting node A

Rewriting node B

a b a c

a b a c

A

Subgraph 1
b c

a

A

Subgraph 2

b c
a

B

Subgraph 2

a b a c

B

Subgraph 1

In both cases 1 node is saved

• AIG rewriting minimizes the number of AIG nodes without
increasing the number of AIG levels

30

AIG-Based Solutions (Synthesis)
• Restructures AIG or logic network by the following transforms

– Algebraic balancing
– Rewriting/refactoring/redecomposition
– Resubstitution
– Minimization with don't-cares, etc.

SynthesisSynthesis

D2D2
D1D1

Synthesis with choicesSynthesis with choices

D3D3
HAIGHAIG

D2D2D1D1 D3D3 D4D4

D4D4

31

AIG-Based Solutions (Mapping)
Input: A Boolean network
(And-Inverter Graph)

Output: A netlist of K-LUTs implementing
AIG and optimizing some cost function

The subject graph The mapped netlist

Technology
Mapping

a b c d

f

e a b c d e

f

32

Formal Verification
• Equivalence checking

– Takes two designs and makes
a miter (AIG)

• Model checking safety
properties
– Takes design and property and

makes a miter (AIG)

The goals are the same: to
transform AIG until the
output is proved constant 0

(ABC won model checking
competitions in recent years)

D2D2D1D1

Equivalence checkingEquivalence checking

0

D1D1

Property checkingProperty checking

0
pp

33

(4) Introduction to ABC

• Differences
• Fundamentals
• Programming

34

What Is Berkeley ABC?
• A system for logic synthesis and verification

– Fast
– Scalable
– High quality results (industrial strength)
– Exploits synergy between synthesis and verification

• A programming environment
– Open-source
– Evolving and improving over time

35

Existing Capabilities (2005-2008)

ABC

Combinational logic
synthesis
Fast, scalable, good quality

Technology mapping
with structural choices
CutCut--based, heuristic, good based, heuristic, good
area/delay, flexiblearea/delay, flexible

Sequential synthesis
Innovative, scalable, Innovative, scalable,
verifiableverifiable

Sequential verification
Integrated, interacts with
synthesis

36

Screenshot

37

ABC vs. Other Tools
 Industrial

+ well documented, fewer bugs
- black-box, push-button, no source code, often expensive

 SIS
+ traditionally very popular
- data structures / algorithms outdated, weak sequential synthesis

 VIS
+ very good implementation of BDD-based verification algorithms
- not meant for logic synthesis, does not feature the latest SAT-based

implementations
 MVSIS

+ allows for multi-valued and finite-automata manipulation
- not meant for binary synthesis, lacking recent implementations

38

How Is ABC Different From SIS?

Equivalent AIG in ABCEquivalent AIG in ABC

aa bb cc dd

ff

ee

xx yy

zz

Boolean network in SISBoolean network in SIS

aa bb cc dd

ee

xx yy

ff

zz

ze

xd yd xy

ab cd cd

AIG is a Boolean network of 2-input
AND nodes and inverters (dotted lines)

39

One AIG Node – Many Cuts

Combinational AIGCombinational AIG

aa bb cc dd

ff

ee

• Manipulating AIGs in ABC
– Each node in an AIG has many cuts
– Each cut is a different SIS node
– No a priori fixed boundaries

• Implies that AIG manipulation with
cuts is equivalent to working on
many Boolean networks at the
same time

Different cuts for the same nodeDifferent cuts for the same node
40

Comparison of Two Syntheses

“Classical” synthesis

• Boolean network
• Network manipulation

(algebraic)
– Elimination
– Factoring/Decomposition
– Speedup

• Node minimization
– Espresso
– Don’t cares computed using

BDDs
– Resubstitution

• Technology mapping
– Tree based

ABC “contemporary” synthesis

• AIG network
• DAG-aware AIG rewriting (Boolean)

– Several related algorithms
• Rewriting
• Refactoring
• Balancing
• Speedup

• Node minimization
– Boolean decomposition
– Don’t cares computed using

simulation and SAT
– Resubstitution with don’t cares

• Technology mapping
– Cut based with choice nodes

41

Model Checking Competition

42

43

Further Reading: ABC Tutorial

• For more information, please refer to

– R. Brayton and A. Mishchenko, "ABC: An academic
industrial-strength verification tool", Proc. CAV'10,
Springer, LNCS 6174, pp. 24-40.

– http://www.eecs.berkeley.edu/~alanmi/publications/20
10/cav10_abc.pdf

44

Summary

• Introduced problems in logic synthesis
– Representations and computations

• Described And-Inverter Graphs (AIGs)
– The foundation of innovative synthesis

• Overviewed AIG-based solutions
– Synthesis, mapping, verification

• Introduced ABC
– Differences, fundamentals, programming

45

Assignment: Using ABC
• Using BLIF manual

http://www.eecs.berkeley.edu/~alanmi/publicatio
ns/other/blif.pdf
create a BLIF file representing a 2-bit multiplier

• Perform the following sequence:
– read the file into ABC (command "read")
– check statistics (command "print_stats")
– visualize the network structure (command "show“)
– convert to AIG (command "strash")
– visualize the AIG (command "show")
– convert to BDD (command "collapse")
– visualize the BDD (command "show_bdd")

46

Assignment: Programming ABC
• Write a procedure in ABC environment to iterate over the objects of

the network and list the ID number, type, and fanin object IDs for
each object on a separate line. Integrate this procedure into ABC,
so that running command "test" would invoke your code, and print
the result. Compare the print-out of the new command "test" with the
result of command "show" for the multiplier example above

• Comment 1: For commands "show" and "show_bdd" to work, please
download the binary of software "dot" from GraphViz webpage and
put it in the same directory as the ABC binary or anywhere else in
the path: http://www.graphviz.org

• Comment 2: Make sure GSview and Ghostscript are installed on
your computer. http://pages.cs.wisc.edu/~ghost/gsview/

47

Programming Help
• Example of code to iterate over the objects

void Abc_NtkCleanCopy(Abc_Ntk_t * pNtk)
{

Abc_Obj_t * pObj;
int i;
Abc_NtkForEachObj(pNtk, pObj, i)

pObj->pCopy = NULL;
}

• Example of code to create new command “test”
Call the new procedure (say, Abc_NtkPrintObjs) from
Abc_CommandTest() in file “abc\src\base\abci\abc.c”
Abc_NtkPrintObjs(pNtk);

