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(1) Problems in Synthesis Terminology

What are the objects to be “synthesized™? « Logic function (e.g. F = ab+cd)
— Logic structures Variabl b. '
— Boolean functions (with or without don’t-cares) — Variables (e.g. b)

— State machines, relations, sets, etc. — Minterms (e.g. abcd)
How to represent them efficiently? — Cube (e.g. ab) Primary outputs

— Depends on the task to be solved

* Logic network

Ll 1]l

— Depends on the size of an object _ _ \\ TFO//

How to create, transform, minimize the representations? — Primary inputs/outputs @' Fanouts

— Multi-level logic synthesis — Logic nodes .

~ : _ 2Ny Fani
Technology mapping _ — Fanins/fanouts e \\amns

How to verify the correctness of the design? _ Transitive fanin/fanout cone S7TRE O

— Gate-level equivalence checking _ _ T T T T T T T T TTTT ]

— Property checking — Cut and window (defined later) Primary inputs

— Etc.
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Find each of these representations? ik « TT are the natural representation of logic functions
* Truthtable (TT) f 9999 19 — Not practical for large functions
*  Sum-of-products (SOP) 40» 22?2 2 — still good for functions up to 16 variables
: P.rOdUCEOfTS!JmZ.(POS) TR e SOP is widely used in synthesis tools since 1980’'s
: Blnar_y ecision ﬁ\gram (BDD) Q@ Q. o100 1o — More compact than TT, but not canonical
: And.-lnverter graph (AIG) — Can be efficiently minimized (SOP minimization by Espresso, ISOP
* Logic network (LN) 4 B o101 10 computation) and translated into multi-level forms (algebraic factoring)
OET i e BDD is a useful representation discovered around 1986
SOOO 5 — Canonical (for a given function, there is only one BDD)
] oo 1o — Very good, but only if (a) it can be constructed, (b) it is not too large
F = ab+cd — Unreliable (non-robust) for many industrial circuits
a C 1010 | O . . .
TR e AIG is an up-and-coming representation!
@ 10 11 — Compact, easy to construct, can be made “canonical” using a SAT solver
R — Unifies the synthesis/mapping/verification flow
— The main reason to give this talk ©
F = (a+c)(a+d)(b+c)(b+d 1110 |1
(a*c)(@rd)(brc)(b+d) CRO R e
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Historical Perspective

Problem Size
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What Representation to Use?

For small functions (up to 16 inputs)

— TT works the best (local transforms, decomposition, factoring, etc.)
For medium-sized functions (16-100 inputs)

— In some cases, BDDs are still used (reachability analysis)

— Typically, it is better to represent as AIGs
« Translate AIG into CNF and use SAT solver for logic manipulation
— Sometimes need interpolation or SAT assignment enumeration
For large industrial circuits (>100 inputs, >10,000 gates)
— Traditional LN representation is not efficient
— AIGs work remarkably well
« Lead to efficient synthesis
« Are a natural representation for technology mapping
« Easy to translate into CNF for SAT solving
« Etc.
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What are Typical Transformations?

» Typical transformations of representations
— For SOP, minimize cubes/literals
— For BDD, minimize nodes/width
— For AIG, restructure, minimize nodes/levels
— For LN, restructure, minimize area/delay
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Algorithmic Paradigms

Divide-and-conquer

— Traversal, windowing, cut computation
Guess-and-check

— Bit-wise simulation
Reason-and-prove

— Boolean satisfiability
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Traversal

e Traversal is visiting nodes in
the network in some order

Primary outputs

» Topological order visits
nodes from Pls to POs

— Each node is visited after its
fanins are visited

» Reverse topological order visits
nodes from POs to Pls

— Each node is visited after its
fanouts are visited

FTTTTTTTTTTT T
Primary inputs

Traversal in a topological order
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Windowing

+ Definition
— A window for a node is the
node’s context, in which an
operation is performed
* A window includes
— k levels of the TFI
— m levels of the TFO

— all re-convergent paths
between window Pls and
window POs
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Structural Cuts in AIG

A cut of a node n is a set of
nodes in transitive fan-in

such that
every path from the node to Pls
is blocked by nodes in the cut.

A k-feasible cut means the size

of the cut must be k or less. The set {p, b, c} is a 3-feasible cut of

node n. (It is also a 4-feasible cut.)

k-feasible cuts are important in FPGA mapping because the logic between
root n and the cut nodes {p, b, c} can be replaced by a k-LUT
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Cut Computation

{{n}, }
Q"
ﬂ (o) (2 b} {{ah (0. )} k[ cuts per

; D q \ node

Computation is /.\ ’\ 4 6
done bottom-up 5 20
{{a}} {{b}} {fc}} 6 80

‘ ) 7 150

a b c

The set of cuts of a node is a ‘cross product’ of the sets of cuts of its children.
Any cut that is of size greater than k is discarded.

(P. Pan et al, FPGA '98; J. Cong et al, FPGA '99)
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Bitwise Simulation

Assign patrticular (or random) values
at the primary inputs
— Multiple simulation patterns are
packed into 32- or 64-bit strings

Perform bitwise simulation at each
node

— Nodes are ordered in a topological
order

Works well for AIG due to
— The uniformity of AND-nodes
— Speed of bitwise simulation

— Topological ordering of memory used
for simulation information

o
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Boolean Satisfiability

» Given a CNF formula ¢(x), satisfiability problem is
to prove that ¢(x) = 0, or to find a counter-example

x"such that o(x’) =1

Why this problem arises?

— If CNF were a canonical representation (like BDD), it would be

trivial to answer this question.

— But CNF is not canonical. Moreover, CNF can be very
redundant, so that a large formula is, in fact, equivalent to 0.

— Looking for a satisfying assignment can be similar to searching

for a needle in the hay-stack.

— The problem may be even harder, if there is no needle there!
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Example (Deriving CNF)

CNF
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SAT Solver

SAT solver types

— CNF-based, circuit-based
— Complete, incomplete

— DPLL, saturation, etc.

Applications in EDA

— Verification
« Equivalence checking
* Model checking

— Synthesis
« Circuit restructuring
« Decomposition
« False path analysis

— Routing

A lot of magic is used to build an
efficient SAT solver
— Two literal clause watching

— Conflict analysis with clause
recording

— Non-chronological backtracking
— Variable ordering heuristics
— Random restarts, etc

The best SAT solver is MiniSAT
(http://minisat.se/)
— Efficient (won many competitions)
— Simple (600 lines of code)
— Easy to modify and extend
— Integrated into ABC 20




Example (SAT Solving)

21

Courtesy Karem Sakallah, University of Michigan
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(2) And-Inverter Graphs (AIG)

Definition and examples

Several simple tricks that make AlGs work
Sequential AlGs

Unifying representation

A typical synthesis application: AlG rewriting

AlIG Definition and Examples

AlG is a Boolean network composed of two-input ANDs and inverters.
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Three Simple Tricks

Structural hashing
— Makes sure AIG is stored in a compact form
— Is applied during AIG construction
» Propagates constants
« Makes each node structurally unique
Complemented edges
— Represents inverters as attributes on the edges
¢ Leads to fast, uniform manipulation
« Does not use memory for inverters
 Increases logic sharing using DeMorgan’s rule
Memory allocation
— Uses fixed amount of memory for each node
« Can be done by a simple custom memory manager
« Even dynamic fanout manipulation is supported!
— Allocates memory for nodes in a topological order
« Optimized for traversal in the same topological order
« Small static memory footprint for many applications
— Computes fanout information on demand

Without hashing

With hashing™




Sequential AIGs

Sequential networks have memory elements in
addition to logic nodes

— Memory elements are modeled as D-flip-flops

— Initial state {0,1,x} is assumed to be given

Several ways of representing sequential AlIGs

— Additional Pls and POs in the combinational AIG

— Additional register nodes with sequential structural hashing
Sequential synthesis (in particular, retiming)
annotates registers with additional information

— Takes into account register type and its clock domain
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AIG: A Unifying Representation

* An underlying data structure for various computations

— Rewriting, resubstitution, simulation, SAT sweeping, induction,
etc. are based on the same AIG manager

» A unifying representation for the whole flow
— Synthesis, mapping, verification use the same data structure
— Allows multiple structures to be stored and used for mapping
* The main functional representation in ABC
— A foundation of new logic synthesis
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(3) AlG-Based Solutions

» Synthesis
« Mapping
 Verification

27

Design Flow

’ System Specification ‘

’ Logic synthesis ‘

l

’ Technology mapping ‘

uoneslLIaA

<::’ i Physical synthesis |

el R ’

’ Manufacturing ‘
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Combinational Synthesis

minimizes the number of AIG nodes without
increasing the number of AIG levels

Rewriting AlG subgraphs

» Pre-computing AIG subgraphs Rewriting node A
— Consider function f = abc ®\
dn = o
\ b \c
Subgraph 1 Subgraph 2 Subgraph 3 ab ac

O\ Rewriting node B
ﬁ{ Q @ b ®) \ By
ab ac b ¢ a ¢ = e, \d
{ @ Q \
a a c b oG a b a

In both cases 1 node is saved
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AlG-Based Solutions (Synthesis)

* Restructures AIG or logic network by the following transforms
— Algebraic balancing
— Rewriting/refactoring/redecomposition
— Resubstitution
— Minimization with don't-cares, etc.

D1 D2 D3 D4

D1
D2 HAIG D4

D3 30

AlG-Based Solutions (Mapping)

Input: A Boolean network Output: A netlist of K-LUTs implementing
(And-Inverter Graph) AIG and optimizing some cost function
f
f
S
Technology
Mapping
e ab cde

The subject graph The mapped netlist 31

Formal Verification

Equivalence checking
— Takes two designs and makes

a miter (AIG) Q
0
— Takes design and property and D1 b2
makes a miter (AIG)

The goals are the same: to -
transform AIG until the Property checking
output is proved constant O A

p
(ABC won model checking b1 0
competitions in recent years)
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(4) Introduction to ABC

» Differences
 Fundamentals
* Programming
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What Is Berkeley ABC?

» A system for logic and
— Fast
— Scalable
— High quality results (industrial strength)
— Exploits between synthesis and verification

* A programming environment
— Open-source
— Evolving and improving over time
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Existing Capabilities (2005-2008)

Cut-based, heuristic, good

Fast, scalable, good quality area/delay. flexible

Integrated, interacts with Innovative, scalable,
synthesis verifiable
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Screenshot

36




ABC vs. Other Tools

Industrial

black-box, push-button, no source code, often expensive
= SIS

data structures / algorithms outdated, weak sequential synthesis

= VIS

not meant for logic synthesis, does not feature the latest SAT-based
implementations

MVSIS

not meant for binary synthesis, lacking recent implementations
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How Is ABC Different From SIS?
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AIG is a Boolean network of 2-input
AND nodes and inverters (dotted lines
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One AIG Node — Many Cuts

Combinational AIG + Manipulating AlIGs in ABC
f — Each node in an AIG has many cuts
— Eachcutisa SIS node
) — No a priori fixed boundaries
* Implies that AIG manipulation with
cuts is equivalent to working on
Boolean networks at the

same time
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Comparison of Two Syntheses

Boolean network
Network manipulation
(algebraic)

— Elimination

— Factoring/Decomposition
— Speedup

Node minimization

— Espresso

— Don't cares computed using
BDDs

— Resubstitution
Technology mapping
— Tree based

AIG network
DAG-aware AIG rewriting (Boolean)
— Several related algorithms
* Rewriting
« Refactoring
« Balancing
¢ Speedup
Node minimization
— Boolean decomposition

— Don't cares computed using
simulation and SAT

— Resubstitution with don't cares

Technology mapping
— Cut based with choice nodes




Model Checking Competition

%) Hardware Model Checking Competition 2010 - Mogzilla Firefox =10l x|
Ele Edit View History Bookmarks Yahoo! Tools  Help
6 - € 0 [ [ttt ctinemect jresuts bl v - I-‘_lv [ Googe Pl Ea
J Fiv Hardware Model Checking Competiti... | = ]T
‘ 'N Results
"cc The results have been presented at HWWW 10 with the following slides
The winners are:
HWMCC*10 ALL abesuperprove  Universify of California, Berkeley
Benchmarks SAT abcbmez2 Univarsify of California, Berkelay
Crganizers UNSAT pdirav Polifacnico di Torino
ResLits
Bules For more information an the set-up please consult the slides of the HAWWY 10
Wore details can be found in the following files: table xds, table csv, details bd, and checked b
Done 4
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Further Reading: ABC Tutorial

» For more information, please refer to

— R. Brayton and A. Mishchenko, "ABC: An academic
industrial-strength verification tool", Proc. CAV'10,
Springer, LNCS 6174, pp. 24-40.

— http://www.eecs.berkeley.edu/~alanmi/publications/20
10/cav10_abc.pdf
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Summary

Introduced problems in logic synthesis

— Representations and computations

» Described And-Inverter Graphs (AIGS)
— The foundation of innovative synthesis

» Overviewed AlG-based solutions

— Synthesis, mapping, verification
 Introduced ABC
— Differences, fundamentals, programming

44




Assignment: Using ABC

e Using BLIF manual
http://www.eecs.berkeley.edu/~alanmi/publicatio
ns/other/blif.pdf

create a BLIF file representing a 2-bit multiplier

» Perform the following sequence:
— read the file into ABC (command "read")
— check statistics (command "print_stats")
— visualize the network structure (command "show")
— convert to AIG (command "strash")
— visualize the AIG (command "show")
— convert to BDD (command "collapse™)

— visualize the BDD (command "show_bdd")
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Assignment: Programming ABC

« Write a procedure in ABC environment to iterate over the objects of
the network and list the ID number, type, and fanin object IDs for
each object on a separate line. Integrate this procedure into ABC,
so that running command "test" would invoke your code, and print
the result. Compare the print-out of the new command "test" with the
result of command "show" for the multiplier example above

« Comment 1: For commands "show" and "show_bdd" to work, please
download the binary of software "dot" from GraphViz webpage and
put it in the same directory as the ABC binary or anywhere else in
the path: http://www.graphviz.org

 Comment 2: Make sure GSview and Ghostscript are installed on

your computer. http://pages.cs.wisc.edu/~ghost/gsview/
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Programming Help

» Example of code to iterate over the objects

» Example of code to create new command “test”

Call the new procedure (say, Abc_NtkPrintObjs) from
Abc_CommandTest() in file “abc\src\base\abci\abc.c”
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