Overview

Introduction (1) Problems in logic synthesis
to — Representations and computations

Logic Synthesis with ABC (2) And-lnverter G_raphs .(AlGS) |
— The foundation of innovative synthesis
(3) AlG-based solutions
— Synthesis, mapping, verification
(4) Introduction to ABC
— Differences, fundamentals, programming
(5) Programming assignment

Alan Mishchenko

UC Berkeley

(1) Problems in Synthesis Terminology

What are the objects to be “synthesized™? « Logic function (e.g. F = ab+cd)
— Logic structures Variabl b. '
— Boolean functions (with or without don’t-cares) — Variables (e.g. b)

— State machines, relations, sets, etc. — Minterms (e.g. abcd)
How to represent them efficiently? — Cube (e.g. ab) Primary outputs

— Depends on the task to be solved

* Logic network

Ll 1]l

— Depends on the size of an object _ _ \\ TFO//

How to create, transform, minimize the representations? — Primary inputs/outputs @' Fanouts

— Multi-level logic synthesis — Logic nodes .

~ : _ 2Ny Fani
Technology mapping _ — Fanins/fanouts e \\amns

How to verify the correctness of the design? _ Transitive fanin/fanout cone S7TRE O

— Gate-level equivalence checking _ _ T T T T T T T T TTTT]

— Property checking — Cut and window (defined later) Primary inputs

— Etc.

Logic (Boolean) Function

Relations

ab
00 01 11 10
« Completely specified ®d owfoTo]1]0 Relation (al1,a2) — (b1,b2) Characteristic function
H H oo 0 1 0
logic function N SRR - (0,0) - (0,0) al a2
wlo|lo|1]o0 - (O,l)—)(l,O)(O,l) bl b2 00 01 11 10
ab - (1,00 > (1,2) ZS (1) 2 z 2
. 00 01 11 10 _ 1’1 N 110
* Incompletely specified o [oTolr 0 L~ (L0) uflojofola
. . _ _ _ 10
logic function N -
0fo 0 1 0 * FSM
Current
state
00 01 11 10 00 01 11 10 00 01 11 10 @ @ Next 00 01 11 10
owlolol1]o o110l ooflofofo |o state 1p11-10
olof{ofofo oli1fofofo oo 1|11 i Ll
uflilz1]1]o0 ufloloflofo mwjo|ofof1 . —
wlolo|1]o0 wl1|1]o]1 wlolofo]o @ oprlol- 1o
On-set Off-set DC-set ° °
Find each of these representations? ik « TT are the natural representation of logic functions
* Truthtable (TT) f 9999 19 — Not practical for large functions
* Sum-of-products (SOP) 40» 22?2 2 — still good for functions up to 16 variables
: P.rOdUCEOfTS!JmZ.(POS) TR e SOP is widely used in synthesis tools since 1980’'s
: Blnar_y ecision ﬁ\gram (BDD) Q@ Q. o100 1o — More compact than TT, but not canonical
: And.-lnverter graph (AIG) — Can be efficiently minimized (SOP minimization by Espresso, ISOP
* Logic network (LN) 4 B o101 10 computation) and translated into multi-level forms (algebraic factoring)
OET i e BDD is a useful representation discovered around 1986
SOOO 5 — Canonical (for a given function, there is only one BDD)
] oo 1o — Very good, but only if (a) it can be constructed, (b) it is not too large
F = ab+cd — Unreliable (non-robust) for many industrial circuits
a C 1010 | O . . .
TR e AIG is an up-and-coming representation!
@ 10 11 — Compact, easy to construct, can be made “canonical” using a SAT solver
R — Unifies the synthesis/mapping/verification flow
— The main reason to give this talk ©
F = (a+c)(a+d)(b+c)(b+d 1110 |1
(a*c)(@rd)(brc)(b+d) CRO R e
7

Historical Perspective

Problem Size

ABC
100000
SIS, VIS,
MVSIS
100
Espresso,
50 MIS, SIS
AIG
16 sop BDD CNF
T
1950-1970 1980 1990 2000 Time

What Representation to Use?

For small functions (up to 16 inputs)

— TT works the best (local transforms, decomposition, factoring, etc.)
For medium-sized functions (16-100 inputs)

— In some cases, BDDs are still used (reachability analysis)

— Typically, it is better to represent as AIGs
« Translate AIG into CNF and use SAT solver for logic manipulation
— Sometimes need interpolation or SAT assignment enumeration
For large industrial circuits (>100 inputs, >10,000 gates)
— Traditional LN representation is not efficient
— AIGs work remarkably well
« Lead to efficient synthesis
« Are a natural representation for technology mapping
« Easy to translate into CNF for SAT solving
« Etc.

10

What are Typical Transformations?

» Typical transformations of representations
— For SOP, minimize cubes/literals
— For BDD, minimize nodes/width
— For AIG, restructure, minimize nodes/levels
— For LN, restructure, minimize area/delay

11

Algorithmic Paradigms

Divide-and-conquer

— Traversal, windowing, cut computation
Guess-and-check

— Bit-wise simulation
Reason-and-prove

— Boolean satisfiability

12

Traversal

e Traversal is visiting nodes in
the network in some order

Primary outputs

» Topological order visits
nodes from Pls to POs

— Each node is visited after its
fanins are visited

» Reverse topological order visits
nodes from POs to Pls

— Each node is visited after its
fanouts are visited

FTTTTTTTTTTT T
Primary inputs

Traversal in a topological order
13

Windowing

+ Definition
— A window for a node is the
node’s context, in which an
operation is performed
* A window includes
— k levels of the TFI
— m levels of the TFO

— all re-convergent paths
between window Pls and
window POs

14

Structural Cuts in AIG

A cut of a node n is a set of
nodes in transitive fan-in

such that
every path from the node to Pls
is blocked by nodes in the cut.

A k-feasible cut means the size

of the cut must be k or less. The set {p, b, c} is a 3-feasible cut of

node n. (It is also a 4-feasible cut.)

k-feasible cuts are important in FPGA mapping because the logic between
root n and the cut nodes {p, b, c} can be replaced by a k-LUT
15

Cut Computation

{{n}, }
Q"
ﬂ (o) (2 b} {{ah (0.)} k[cuts per

; D q \ node

Computation is /.\ ’\ 4 6
done bottom-up 5 20
{{a}} {{b}} {fc}} 6 80

‘) 7 150

a b c

The set of cuts of a node is a ‘cross product’ of the sets of cuts of its children.
Any cut that is of size greater than k is discarded.

(P. Pan et al, FPGA '98; J. Cong et al, FPGA '99)

16

Bitwise Simulation

Assign patrticular (or random) values
at the primary inputs
— Multiple simulation patterns are
packed into 32- or 64-bit strings

Perform bitwise simulation at each
node

— Nodes are ordered in a topological
order

Works well for AIG due to
— The uniformity of AND-nodes
— Speed of bitwise simulation

— Topological ordering of memory used
for simulation information

o

2w N e

[o]-]o]c]

=

17

Boolean Satisfiability

» Given a CNF formula ¢(x), satisfiability problem is
to prove that ¢(x) = 0, or to find a counter-example

x"such that o(x’) =1

Why this problem arises?

— If CNF were a canonical representation (like BDD), it would be

trivial to answer this question.

— But CNF is not canonical. Moreover, CNF can be very
redundant, so that a large formula is, in fact, equivalent to 0.

— Looking for a satisfying assignment can be similar to searching

for a needle in the hay-stack.

— The problem may be even harder, if there is no needle there!

18

Example (Deriving CNF)

CNF

0 010
QEn
o/

clo

19

SAT Solver

SAT solver types

— CNF-based, circuit-based
— Complete, incomplete

— DPLL, saturation, etc.

Applications in EDA

— Verification
« Equivalence checking
* Model checking

— Synthesis
« Circuit restructuring
« Decomposition
« False path analysis

— Routing

A lot of magic is used to build an
efficient SAT solver
— Two literal clause watching

— Conflict analysis with clause
recording

— Non-chronological backtracking
— Variable ordering heuristics
— Random restarts, etc

The best SAT solver is MiniSAT
(http://minisat.se/)
— Efficient (won many competitions)
— Simple (600 lines of code)
— Easy to modify and extend
— Integrated into ABC 20

Example (SAT Solving)

21

Courtesy Karem Sakallah, University of Michigan

o PO /\
A AN ya
o R Y ANVANVAN
: E:Ei:z:;?/\ A5 AN
N HE BEE B

(2) And-Inverter Graphs (AIG)

Definition and examples

Several simple tricks that make AlGs work
Sequential AlGs

Unifying representation

A typical synthesis application: AlG rewriting

AlIG Definition and Examples

AlG is a Boolean network composed of two-input ANDs and inverters.

% 00 01 11 10

00] O 0 0 &\
01jojo [] /O</ /O\ 6 nodes
mjolf Jj| 0 @ b d \\ 4 levels
1oflo|oflL]o < o

/ /7N

a c¢c b c

% 00 01 11 10

oolo|o (_ @ }

orlo o %) . /O\o S odes
11 0 (0 / evels
ofo |l Jo a/qé }\d t(é}\d) 23|

Three Simple Tricks

Structural hashing
— Makes sure AIG is stored in a compact form
— Is applied during AIG construction
» Propagates constants
« Makes each node structurally unique
Complemented edges
— Represents inverters as attributes on the edges
¢ Leads to fast, uniform manipulation
« Does not use memory for inverters
 Increases logic sharing using DeMorgan’s rule
Memory allocation
— Uses fixed amount of memory for each node
« Can be done by a simple custom memory manager
« Even dynamic fanout manipulation is supported!
— Allocates memory for nodes in a topological order
« Optimized for traversal in the same topological order
« Small static memory footprint for many applications
— Computes fanout information on demand

Without hashing

With hashing™

Sequential AIGs

Sequential networks have memory elements in
addition to logic nodes

— Memory elements are modeled as D-flip-flops

— Initial state {0,1,x} is assumed to be given

Several ways of representing sequential AlIGs

— Additional Pls and POs in the combinational AIG

— Additional register nodes with sequential structural hashing
Sequential synthesis (in particular, retiming)
annotates registers with additional information

— Takes into account register type and its clock domain

25

AIG: A Unifying Representation

* An underlying data structure for various computations

— Rewriting, resubstitution, simulation, SAT sweeping, induction,
etc. are based on the same AIG manager

» A unifying representation for the whole flow
— Synthesis, mapping, verification use the same data structure
— Allows multiple structures to be stored and used for mapping
* The main functional representation in ABC
— A foundation of new logic synthesis

26

(3) AlG-Based Solutions

» Synthesis
« Mapping
 Verification

27

Design Flow

’ System Specification ‘

’ Logic synthesis ‘

l

’ Technology mapping ‘

uoneslLIaA

<::’ i Physical synthesis |

el R ’

’ Manufacturing ‘

28

Combinational Synthesis

minimizes the number of AIG nodes without
increasing the number of AIG levels

Rewriting AlG subgraphs

» Pre-computing AIG subgraphs Rewriting node A
— Consider function f = abc ®\
dn = o
\ b \c
Subgraph 1 Subgraph 2 Subgraph 3 ab ac

O\ Rewriting node B
ﬁ{ Q @ b ®) \ By
ab ac b ¢ a ¢ = e, \d
{ @ Q \
a a c b oG a b a

In both cases 1 node is saved
29

AlG-Based Solutions (Synthesis)

* Restructures AIG or logic network by the following transforms
— Algebraic balancing
— Rewriting/refactoring/redecomposition
— Resubstitution
— Minimization with don't-cares, etc.

D1 D2 D3 D4

D1
D2 HAIG D4

D3 30

AlG-Based Solutions (Mapping)

Input: A Boolean network Output: A netlist of K-LUTs implementing
(And-Inverter Graph) AIG and optimizing some cost function
f
f
S
Technology
Mapping
e ab cde

The subject graph The mapped netlist 31

Formal Verification

Equivalence checking
— Takes two designs and makes

a miter (AIG) Q
0
— Takes design and property and D1 b2
makes a miter (AIG)

The goals are the same: to -
transform AIG until the Property checking
output is proved constant O A

p
(ABC won model checking b1 0
competitions in recent years)

32

(4) Introduction to ABC

» Differences
 Fundamentals
* Programming

33

What Is Berkeley ABC?

» A system for logic and
— Fast
— Scalable
— High quality results (industrial strength)
— Exploits between synthesis and verification

* A programming environment
— Open-source
— Evolving and improving over time

34

Existing Capabilities (2005-2008)

Cut-based, heuristic, good

Fast, scalable, good quality area/delay. flexible

Integrated, interacts with Innovative, scalable,
synthesis verifiable

35

Screenshot

36

ABC vs. Other Tools

Industrial

black-box, push-button, no source code, often expensive
= SIS

data structures / algorithms outdated, weak sequential synthesis

= VIS

not meant for logic synthesis, does not feature the latest SAT-based
implementations

MVSIS

not meant for binary synthesis, lacking recent implementations

37

How Is ABC Different From SIS?

/
a

ol

e

b d

f

@,

0@

AIG is a Boolean network of 2-input
AND nodes and inverters (dotted lines

)38

One AIG Node — Many Cuts

Combinational AIG + Manipulating AlIGs in ABC
f — Each node in an AIG has many cuts
— Eachcutisa SIS node
) — No a priori fixed boundaries
* Implies that AIG manipulation with
cuts is equivalent to working on
Boolean networks at the

same time

39

Comparison of Two Syntheses

Boolean network
Network manipulation
(algebraic)

— Elimination

— Factoring/Decomposition
— Speedup

Node minimization

— Espresso

— Don't cares computed using
BDDs

— Resubstitution
Technology mapping
— Tree based

AIG network
DAG-aware AIG rewriting (Boolean)
— Several related algorithms
* Rewriting
« Refactoring
« Balancing
¢ Speedup
Node minimization
— Boolean decomposition

— Don't cares computed using
simulation and SAT

— Resubstitution with don't cares

Technology mapping
— Cut based with choice nodes

Model Checking Competition

%) Hardware Model Checking Competition 2010 - Mogzilla Firefox =10l x|
Ele Edit View History Bookmarks Yahoo! Tools Help
6 - € 0 [[ttt ctinemect jresuts bl v - I-‘_lv [Googe Pl Ea
J Fiv Hardware Model Checking Competiti... | =]T
‘ 'N Results
"cc The results have been presented at HWWW 10 with the following slides
The winners are:
HWMCC*10 ALL abesuperprove Universify of California, Berkeley
Benchmarks SAT abcbmez2 Univarsify of California, Berkelay
Crganizers UNSAT pdirav Polifacnico di Torino
ResLits
Bules For more information an the set-up please consult the slides of the HAWWY 10
Wore details can be found in the following files: table xds, table csv, details bd, and checked b
Done 4
41

Cactus all Instances 22126

900 T .
abcsuperprove + e v TmO +

pdtrav q,
ic3 e .

800 - abcdprove - 1

tipind . .

[%
[e]
<@

cip
700 abc08 » . v a B B
bipzzig]c - -

ip

tipnd v v -
800 mcsti 8 ¥ g
mcaigerind
tipbme @ .
tipbmc08 & 8o
o

* O
A

500 - mbme

abcbme2
mcaigerbme
400 nusmvbme
abcbme3
aigtrav
nusmvbdd

$000G0
[

300

200

100

“'..,.v.!%o @B 0o o

0 ' ok -
0 100 200 300 400 500 600 700 800

Further Reading: ABC Tutorial

» For more information, please refer to

— R. Brayton and A. Mishchenko, "ABC: An academic
industrial-strength verification tool", Proc. CAV'10,
Springer, LNCS 6174, pp. 24-40.

— http://www.eecs.berkeley.edu/~alanmi/publications/20
10/cav10_abc.pdf

43

Summary

Introduced problems in logic synthesis

— Representations and computations

» Described And-Inverter Graphs (AIGS)
— The foundation of innovative synthesis

» Overviewed AlG-based solutions

— Synthesis, mapping, verification
 Introduced ABC
— Differences, fundamentals, programming

44

Assignment: Using ABC

e Using BLIF manual
http://www.eecs.berkeley.edu/~alanmi/publicatio
ns/other/blif.pdf

create a BLIF file representing a 2-bit multiplier

» Perform the following sequence:
— read the file into ABC (command "read")
— check statistics (command "print_stats")
— visualize the network structure (command "show")
— convert to AIG (command "strash")
— visualize the AIG (command "show")
— convert to BDD (command "collapse™)

— visualize the BDD (command "show_bdd")
45

Assignment: Programming ABC

« Write a procedure in ABC environment to iterate over the objects of
the network and list the ID number, type, and fanin object IDs for
each object on a separate line. Integrate this procedure into ABC,
so that running command "test" would invoke your code, and print
the result. Compare the print-out of the new command "test" with the
result of command "show" for the multiplier example above

« Comment 1: For commands "show" and "show_bdd" to work, please
download the binary of software "dot" from GraphViz webpage and
put it in the same directory as the ABC binary or anywhere else in
the path: http://www.graphviz.org

 Comment 2: Make sure GSview and Ghostscript are installed on

your computer. http://pages.cs.wisc.edu/~ghost/gsview/

46

Programming Help

» Example of code to iterate over the objects

» Example of code to create new command “test”

Call the new procedure (say, Abc_NtkPrintObjs) from
Abc_CommandTest() in file “abc\src\base\abci\abc.c”

a7

