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Boolean Function Representation

Sum of Products
 A function can be represented by a sum of cubes (products):

 E.g., f = ab + ac + bc
Since each cube is a product of literals, this is a “sum of 
products” (SOP) representation

 An SOP can be thought of as a set of cubes F
 E.g., F = {ab, ac, bc} 

 A set of cubes that represents f is called a cover of f
 E.g., 

F1={ab, ac, bc}  and F2={abc, abc’, ab’c, a’bc} are covers of        
f = ab + ac + bc. 
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List of Cubes (Cover Matrix)

We often use a matrix notation to represent a 
cover:
 Example

F = ac + c’d =

a b c d           a b c d
a c  1 2 1 2    or    1 - 1 -
c’d  2 2 0 1           - - 0 1

Each row represents a cube
1 means that the positive literal appears in the cube 
0 means that the negative literal appears in the cube
2 (or -) means that the variable does not appear in the 

cube. It implicitly represents both 0 and 1 values.
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PLA

 A PLA is a (multiple-output) function f : Bn  Bm

represented in SOP form

f2 f3f1

n=3, m=3

a a b b c c
abc f1f2f3

10- 1 - -

-11  1 - -

0-0  - 1 -

111  - 1 1

00- - - 1

cover matrix
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PLA

 Each distinct cube appears just once in the AND-
plane, and can be shared by (multiple) outputs in 
the OR-plane, e.g., cube (abc)

 Extensions from single-output to multiple-output 
minimization theory are straightforward
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SOP
 The cover (set of SOPs) can efficiently represent many 

practical logic functions (i.e., for many practical functions, 
there exist small covers)

 Two-level minimization seeks the cover of minimum size 
(least number of cubes)

bc ac

ab
c

a

b

= onset minterm

Note that each onset minterm is 
“covered” by at least one of the 
cubes!
None of the offset minterms is 
covered
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Irredundant Cube

 Let F = {c1, c2, …, ck} be a cover for f, i.e.,
f = i

k
=1 ci

A cube ci F is irredundant if F\{ci}  f

 Example

f = ab + ac + bc

bc ac

ab
c

a

b

bc

ac
Not covered

F\{ab}  f
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Prime Cube
 A literal x (a variable or its negation) of cube c  F  (cover 

of f) is prime if (F \ {c})  {cx}  f,
where cx (cofactor w.r.t. x) is c with literal x of c deleted

 A cube of F is prime if all its literals are prime

 Example 
f = xy + xz + yz
c = xy; cy = x (literal y deleted)
F \ {c}  {cy} = x + xz + yz

yz

xz
x

z

x

yinequivalent to f since
offset vertex is covered
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Prime and Irredundant Cover
 Definition 1. A cover is prime (resp. irredundant) if all its 

cubes are prime (resp. irredundant) 

 Definition 2. A prime (cube) of f is essential (essential 
prime) if there is a onset minterm (essential vertex) in that 
prime but not in any other prime

 Definition 3. Two cubes are orthogonal if they do not have 
any minterm in common
 E.g. c1= xy c2 = y’z are orthogonal

c1= x’y c2 = yz are not orthogonal
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Prime and Irredundant Cover
 Example

f = abc + b’d + c’d is prime and irredundant.
abc is essential since abcd’abc, but not in b’d or c’d or ad

Why is abcd not an essential vertex of abc?
What is an essential vertex of abc?
What other cube is essential? What prime is not essential?

abc

bd

cdda

c
b
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Incompletely Specified Function

 Let F = (f, d, r) : Bn  {0, 1, *}, where * 
represents “don’t care”
 f = onset function f(x)=1  F(x)=1 
 r = offset function r(x)=1  F(x)=0 
 d = don’t care function d(x)=1  F(x)=*

 (f,d,r) forms a partition of Bn, i.e,
 f + d + r = Bn

 (f  d) = (f  r) = (d  r) =  (pairwise disjoint)
(Here we don’t distinguish characteristic functions and 
the sets they represent)
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Incompletely Specified Function

 A completely specified function g is a 
cover for F = (f,d,r) if

f  g  f+d
 gr = 
 if xd (i.e. d(x)=1), then g(x) can be 0 or 1; 

if xf, then g(x) = 1; if xr, then g(x) = 0
 We “don’t care” which value g has at xd
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Prime of Incompletely Specified 
Function

 Definition. A cube c is a prime of F = (f,d,r) if c 
f+d (an implicant of f+d), and no other implicant
(of f+d) contains c (i.e., it is simply a prime of 
f+d)

 Definition. Cube cj of cover G = {ci} of F = (f,d,r) 
is redundant if f  G\{cj}; otherwise it is 
irredundant

 Note that c  f+d  c  r = 
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Prime of Incompletely Specified 
Function

 Example
Consider logic minimization of F(a,b,c)=(f,d,r) with 
f=a’bc’+ab’c+abc and d = abc’+ab’c’

F1={a’bc’, ab’c, abc}

ab’c is redundant
a is prime

F3= {a, a’bc’}
Expand a’bc’  bc’

Expand abca

F2={a, a’bc’, ab’c}

F4= {a, bc’}

off

on

don’t care
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Checking of Prime and Irredundancy
Let G be a cover of F = (f,d,r), and D be a cover for d
 ci  G is redundant iff

ci  (G\{ci})  D (1)

(Let Gi  G\{ci}  D. Since ci  Gi and f  G  f+d, then ci  cif+cid and cif
 G\{ci}. Thus f  G\{ci}.)

 A literal l  ci is prime if (ci\{ l }) ( = (ci)l ) is not an implicant of F
 A cube ci is a prime of F iff all literals l  ci are prime

Literal l  ci is not prime  (ci)l  f+d (2)

Note: Both tests (1) and (2) can be checked by tautology (to be explained):

 (Gi)ci  1          (implies ci redundant)
 (fd)(ci)l

 1      (implies l not prime)
The above two cofactors are with respect to cubes instead of literals
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(Literal) Cofactor
 Let f : Bn  B be a Boolean function, and x= (x1, x2, …, xn) 

the variables in the support of f; the cofactor fa of f by a 
literal a = xi or a = xi is

 fxi
(x1, x2, …, xn) = f (x1, …,  xi-1, 1, xi+1,…, xn)

 fxi
(x1, x2, …, xn) = f (x1, …,  xi-1, 0, xi+1,…, xn)

The computation of the cofactor is a fundamental operation 
in Boolean reasoning!

 Example

a

b

c

f = abc + abc

a

b

c

fa = bc
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(Literal) Cofactor

 The cofactor Cxj of a cube C (representing some 
Boolean function) with respect to a literal xj is
 C if xj and xj’ do not appear in C
 C\{xj} if xj appears positively in C, i.e., xj  C
  if xj appears negatively in C, i.e., xj’  C

 Example
C =  x1 x4’ x6,
Cx2 = C       (x2 and x2’ do not appear in C)
Cx1 = x4’ x6  (x1 appears positively in C)
Cx4 =   (x4 appears negatively in C)
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(Literal) Cofactor

 Example

F = abc’ + b’d + cd
Fb = ac’ + cd

(Just drop b everywhere and throw away cubes 
containing literal b’)

Cofactor and disjunction commute!
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Shannon Expansion

Let f : Bn  B
Shannon Expansion:

f = xi fxi
+ xi’ fxi’

Theorem: F is a cover of f. Then

F = xi Fxi + xi’ Fxi’

We say that f and F are expanded about xi, and
xi is called the splitting variable
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Shannon Expansion
 Example

F  = ab + ac + bc

F  = a Fa + a’ Fa’

= a (b+c+bc)+a’ (bc) 
= ab+ac+abc+a’bc

Cube bc got split into two cubes

c

a

b
c

a

b

bc

ac

ab
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(Cube) Cofactor

 The cofactor fC of f by a cube C is f with the fixed 
values indicated by the literals of C
 E.g., if C = xi xj’, then xi = 1 and xj = 0

 For C = x1 x4’ x6, fC is just the function f restricted to the 
subspace where x1 = x6 = 1 and x4 = 0
Note that fC does not depend on x1,x4 or x6 anymore

(However, we still consider fC as a function of all n
variables, it just happens to be independent of x1,x4 and x6)

 x1f  fx1
E.g., for f = ac + a’c, afa = af = ac and  fa=c
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(Cube) Cofactor

 The cofactor of the cover F of some function f is 
the sum of the cofactors of each of the cubes of F

 If F={c1, c2,…, ck} is a cover of f, then Fc= {(c1)c, 
(c2)c,…, (ck)c} is a cover of fc
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Containment vs. Tautology
 A fundamental theorem that connects functional containment and 

tautology:

Theorem. Let c be a cube and f a function. Then c  f  fc  1.

Proof.
We use the fact that xfx = xf, and fx is independent of x.
()
Suppose fc  1. Then cf = fcc = c. Thus, c  f.
()
Suppose c  f. Then f+c=f. In addition, fc = (f+c)c = fc+1=1. Thus, 
fc=1.

ff
cc
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Checking of Prime and Irredundancy
(Revisited)
Let G be a cover of F = (f,d,r). Let D be a cover for d
 ci  G is redundant iff

ci  (G\{ci})  D (1)

(Let Gi  G\{ci}  D. Since ci  Gi and f  G  f+d, then ci  cif+cid and cif
 G\{ci}. Thus f  G\{ci}.)

 A literal l  ci is prime if (ci\{ l }) ( = (ci)l ) is not an implicant of F
 A cube ci is a prime of F iff all literals l  ci are prime

Literal l  ci is not prime  (ci)l  f+d (2)

Note: Both tests (1) and (2) can be checked by tautology (explained):

 (Gi)ci  1          (implies ci redundant)
 (fd)(ci)l

 1      (implies l not prime)
The above two cofactors are with respect to cubes instead of literals
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Generalized Cofactor

 Definition. Let f, g be completely specified 
functions. The generalized cofactor of f with 
respect to g is the incompletely specified 
function:

 Definition. Let  = (f, d, r) and g be given. Then

co( f ,g)  ( f  g,g, f  g)

co(,g)  ( f  g,d  g,r  g)
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Shannon vs. Generalized Cofactor

 Let g = xi . Shannon cofactor is
fxi

(x1, x2, …, xn) = f (x1, …,  xi-1, 1, xi+1,…, xn)

 Generalized cofactor with respect to g=xi is

 Note that

In fact fxi
is the unique cover of co(f, xi )

independent of the variable xi .

co( f , xi )  ( f  xi , xi , f  xi )

f  xi  fxi
 f  xi  xi  f  xi
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Shannon vs. Generalized Cofactor

offoff

onon

DonDon’’t caret care

a

f  abc  abc  abc  abc

co( f ,a)  ( f a,a, f a) fa  bc  bc

offoff

onon

DonDon’’t caret care

a

f  abc  abc  abc  abc

co( f ,a)  ( f a,a, f a) fa  bc  bc

offoff

onon

DonDon’’t caret care

a

f  abc  abc  abc  abc

co( f ,a)  ( f a,a, f a) fa  bc  bc
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Shannon vs. Generalized Cofactor

So

f

f a af
fa a

co( f ,a)  ( f a,a, f a)

 

f  a  f
a
 f  aSo

f

f a af
fa a

co( f ,a)  ( f a,a, f a)

 

f  a  f
a
 f  a
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Shannon vs. Generalized Cofactor

Generalized Cofactor

We will get back to the use of generalized cofactor later

Shannon Cofactor

x  fx  x  fx  f

fx 
y
 fxy

f  g y
 fy  gy

f 
x
 fx 

f  g  co( f ,g)  g  co( f ,g)

co(co( f , g),h)  co( f ,gh)

co( f  g,h)  co( f ,h)  co(g,h)

co( f ,g)  co( f ,g)
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Data Structure for SOP 
Manipulation

most of the following slides are by 
courtesy of Andreas Kuehlmann
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Operation on Cube Lists
 AND operation:

 take two lists of cubes
 compute pair-wise AND between individual cubes and put result on 

new list
 represent cubes in computer words
 implement set operations as bit-vector operations

Algorithm AND(List_of_Cubes C1,List_of_Cubes C2) {
C = 
foreach c1  C1 {

foreach c2  C2 {
c = c1  c2
C = C  c

}
}
return C

}
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Operation on Cube Lists
 OR operation:

 take two lists of cubes
 computes union of both lists

 Naive implementation:

Algorithm OR(List_of_Cubes C1, List_of_Cubes C2) {
return C1  C2

}

 On-the-fly optimizations:
 remove cubes that are completely covered by other cubes

 complexity is O(m2); m is length of list
 conjoin adjacent cubes (consensus operation)
 remove redundant cubes? 

 coNP-complete
 too expensive for non-orthogonal lists of cubes
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Operation on Cube Lists

Simple trick: 
 keep cubes in lists orthogonal

check for redundancy becomes O(m2)
but lists become significantly larger (worst case: 

exponential)

 Example
01-0

01-0 0-1- 1-01
1-01 1-11 001-

0111
1-11

OR                 =
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Operation on Cube Lists
 Adding cubes to orthogonal list:

Algorithm ADD_CUBE(List_of_Cubes C, Cube c) {
if(C = ) return {c}
c’ = TOP(C)
Cres = c-c’ /* chopping off minterms may result in multiple cubes */
foreach cres  Cres {
C = ADD_CUBE(C\{c’},cres)  {c’}

}
return C

}

 How can the above procedure be further improved?
 What about the AND operation, does it gain from orthogonal cube lists?
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Operation on Cube Lists
 Naive implementation of COMPLEMENT operation

 apply De’Morgan’s law to SOP 
 complement each cube and use AND operation
Example

 Naive implementation of TAUTOLOGY check
 complement function using the COMPLEMENT operator and 

check for emptiness
 We will show that we can do better than that!

Input                   non-orth.              orthogonal

01-10 =>  1---- => 1----

-0--- 00---

---0- 01-0-

----1      01-11
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Tautology Checking
 Let A be an orthogonal cover matrix, and all cubes of A be 

pair-wise distinguished by at least two literals (this can be 
achieved by an on-the-fly merge of cube pairs that are 
distinguished by only one literal)

Does the following conjecture hold?

A  1    A has a row of all “-”s   ?

This would dramatically simplify the tautology check!
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Tautology Checking
Algorithm CHECK_TAUTOLOGY(List_of_Cubes C) {
if(C == )      return FALSE;
if(C == {-...-})return TRUE; // cube with all ‘-’
xi = SELECT_VARIABLE(C)
C0 = COFACTOR(C,Xi)
if(CHECK_TAUTOLOGY(C0) == FALSE) {

print xi = 0
return FALSE;

}
C1 = COFACTOR(C,Xi)
if(CHECK_TAUTOLOGY(C1) == FALSE) {

print xi = 1
return FALSE;

}
return TRUE;

}
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Tautology Checking

 Implementation tricks
 Variable ordering:

pick variable that minimizes the two sub-cases (“-”s 
get replicated into both cases)

 Quick decision at leaf:
return TRUE if C contains at least one complete “-”

cube among others (case 1)
return FALSE if number of minterms in onset is < 2n  

(case 2)
return FALSE if C contains same literal in every cube 

(case 3)
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Tautology Checking

Example

x1

x1

x2

x2

x3

x4

x4
x3

not tautology (case 3)

not tautology (case 3)

tautology (case 1)

tautology (case 1)

tautology (case 1)

-1-0

--10

1-11

0---

-1-0

--10

--11

-1-0

--10

----

---0

--10

--11

--10

--11

---0

---0

---1

----

----
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Special Functions
 Definition. A function f : Bn  B is symmetric with respect 

to variables xi and xj iff
f(x1,…,xi,…,xj,…,xn) = f(x1,…,xj,…,xi,…,xn)

 Definition. A function f : Bn  B is totally symmetric iff any 
permutation of the variables in f does not change the 
function

i j i jx x x xf f

Symmetry can be exploited in searching BDD since

- can skip one of four sub-cases

- used in automatic variable ordering for BDDs
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Special Functions
 Definition. A function f : Bn  B is positive unate in variable 

xi iff

 This is equivalent to monotone increasing in xi:

for all min-term pairs (m-, m+) where

 Example
(1001, 1011) with i = 3

 
f

xi
 f

xi

f (m )  f (m )

  

m
j
  m

j
 , j  i

m
i
  0

m
i
  1
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Special Functions
 Similarly for negative unate

monotone decreasing

 A function is unate in xi if it is positive unate or negative 
unate in xi

 Definition. A function is unate if it is unate in each variable 

 Definition. A cover F is positive unate in xi iff xi  cj for all 
cubes cjF

 Note that a cover of a unate function is not necessarily unate! 
(However, there exists a unate cover for a unate function.)

f
xi
 f

xi

f (m )  f (m )
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Special Functions

 Example

c

b

a

m+

m-

f(m-)=1  f(m+)=0

positive unate in a,b
negative unate in c

f ab bc ac  
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Unate Recursive Paradigm

 Key pruning technique is based on exploiting the 
properties of unate functions
 based on the fact that unate leaf cases can be 

solved efficiently

 New case splitting heuristic
 splitting variable is chosen so that the 

functions at lower nodes of the recursion tree 
become unate
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Unate Recursive Paradigm

 Unate covers F have many extraordinary properties:
 If a prime cover F is minimal with respect to single-

cube containment, all of its cubes are essential primes
In this case F is the unique minimum cube representation 

of its logic function

 A unate cover represents a tautology iff it contains a 
cube with no literals, i.e., a single tautologous cube

 This type of implicit enumeration applies to many sub-
problems (prime generation, reduction, complementation, 
etc.). Hence, we refer to it as the Unate Recursive 
Paradigm.
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Unate Recursive Paradigm
1. Create cofactoring tree stopping at unate covers

 choose, at each node, the “most binate” variable for splitting
 iterate until no binate variable left (unate leaf)

2. “Operate” on the unate cover at each leaf to obtain the result for that leaf. 
Return the result

3. At each non-leaf node, merge (appropriately) the results of the two 
children.

 Main idea: “Operation” on unate leaf is computationally less complex
 Operations: complement, simplify, tautology, prime generation, ...

a

cb merge
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Unate Recursive Paradigm

Binate select heuristic
 Tautology and other programs based on the 

unate recursive paradigm use a heuristic called 
BINATE_SELECT to choose the splitting 
variable in recursive Shannon expansion

The idea is, for a given cover F, choose the variable 
which occurs, both positively and negatively, most 
often in the cubes of F
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Unate Recursive Paradigm
 Binate select heuristic

 Example
Unate and non-unate covers:

a b c d
G = ac+cd’ 1 - 1 -

- - 1 0

a b c d
F = ac+c’d+bcd’ 1 - 1 -

- - 0 1
- 1 1 0

 Choose c for splitting!

 Binate variables of a cover are those with both 1’s and 0’s in the 
corresponding column

 In the unate recursive paradigm, the BINATE_SELECT heuristic 
chooses a (most) binate variable for splitting, which is thus eliminated 
from the sub-covers

is unate

is not unate
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Unate Recursive Paradigm

Example

edbcdceacf 

1

1

1

0

0

---1
unate

---1-
unate

-1-0-
unate

1---
-1-0
unate

1----
unate

1---0
-1-01

1 - 1 - 0
F= - - 0 1 -

- 1 1 0 1

1 - 1 -
F= - - 0 1

- 1 1 0

e

c

c

FC FC

0

dbcdcacf 
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Unate Recursive Paradigm
Unate Reduction

 Let F(x) be a cover. Let (a,c) be a partition of the variables x, 
and let

where
1. the columns of A (a unate submatrix) correspond to 

variables a of x
2. T is a matrix of all “-”s

 Theorem. Assume A 1. Then F1  F*1









 FT

CA
F
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Unate Recursive Paradigm
Unate Reduction

Example

1 0 1

1 1 0

1 1

0

1



 
  
  

1 1

0

1




We pick for the partitioning unate variables because it is easy to decide that A1









 FT

CA
F
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Unate Recursive Paradigm
Unate Reduction

 Example

 Assume A1 and A2 are unate and have no row of all “-”s. 
 Note that A3 and A4 are unate (single-row sub-matrices)
 Consequently only have to look at D1 to test if this is a tautology

11

00

10

    
    

01

10AA11
AA44

DD11

BB22

AA33

BB11

AA22

      
      
      
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Unate Recursive Paradigm
Unate Reduction

 Theorem:

Let A be a non-tautological unate matrix  (A1) 
and T is a matrix of all -’s. Then F  1  F*  1.

 Proof:
If part: Assume F*  1. Then we can replace F* 
by all -’s. Then last row of F becomes a row of all 
“-”s, so tautology.









 FT

CA
F
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Unate Recursive Paradigm
Unate Reduction

 Proof (cont’d):
Only if part: Assume F* 1. Then there is a 
minterm m2 (in c variables) such that F*m2 

= 0 
(cofactor in cube), i.e. m2 is not covered by F*. 
Similarly, m1 (in a variables) exists where Am1

= 0, 
i.e. m1 is not covered by A. Now the minterm
m1m2 (in the full variable set) satisfies Fm1m2

= 0. 
Since m1m2 is not covered by F, F 1.
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Unate Recursive Paradigm
Application – Tautology Checking
 Improved tautology check

Algorithm CHECK_TAUTOLOGY(List_of_Cubes C) {
if(C == )      return FALSE;
if(C == {-...-}) return TRUE; // cube with all ‘-’
C = UNATE_REDUCTION(C)
xi = BINATE_SELECT(C)
C0 = COFACTOR(C,xi)
if(CHECK_TAUTOLOGY(C0) == FALSE) {

return FALSE;
}
C1 = COFACTOR(C,xi)
if(CHECK_TAUTOLOGY(C1) == FALSE) {

return FALSE;
}
return TRUE;

}
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Unate Recursive Paradigm
Application – Tautology Checking

 Example

x1

x1

x2

x2

x3

x4

x4x3

not tautology (case 3)

not tautology (case 3)

tautology (case 1)

tautology (case 1)

tautology (case 1)

-1-0

--10

1-11

0---

-1-0

--10

--11

-1-0

--10

----

---0

--10

--11

--10

--11

---0

---0

---1

----

----

Unate reduction

not tautology (case 2 and 3)

0---
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Unate Recursive Paradigm
Application – Complement

 We have shown how tautology check (SAT check) can be 
implemented recursively using the Binary Decision Tree

 Similarly, we can implement Boolean operations recursively,
e.g. the COMPLEMENT operation:

 Theorem.

 Proof.

x xf x f x f   

0

1

x x

x x

g x f x f

f x f x f

f g
g f

f g

   
   

  
   
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Unate Recursive Paradigm
Application – Complement

 Complement operation on cube list

Algorithm COMPLEMENT(List_of_Cubes C) {
if(C contains single cube c) {
Cres = complement_cube(c)  // generate one cube per 
return Cres // literal l in c with l

}
else {
xi = SELECT_VARIABLE(C)
C0 = COMPLEMENT(COFACTOR(C,xi))  xi
C1 = COMPLEMENT(COFACTOR(C,xi))   xi
return OR(C0,C1)

}
}
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Unate Recursive Paradigm
Application – Complement

 Efficient complement of a unate cover
 Idea:

 variables appear only in one polarity on the original cover
(ab + bc + ac)’ = (a’+b’)(b’+c’)(a’+c’)

 when multiplied out, a number of products are redundant
a’b’a’ + a’b’c’ + a’c’a’ + a’c’c’+ b’b’a’ + b’b’c’ + b’c’a’ + b’c’c’ =
a’b’ + a’c’ + b’c’

 we just need to look at the combinations for which the 
variables cover all original cubes (see the following example)
 this works independent of the polarity of the variables because of 

symmetry to the (1,1,1,…,1) case (see the following example)
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Unate Recursive Paradigm
Application – Complement

 Map (unate) cover matrix F into Boolean matrix B

F                                       B

convert:  “0”,”1” in F to “1” in B  (literal is present)
“-” in F to “0” in B      (literal is not present)

1 0

0 0 1

1 1 1

1 0 1

a b c d e

  
 

 
 

0 1 0 1 0

0 0 1 1 1

1 1 0 0 1

1 0 1 0 1

a b c d e
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Unate Recursive Paradigm
Application – Complement

 Find all minimal column covers of B. 
 A column cover is a set of columns J such that for each row i, 

jJ such that Bij = 1

 Example
{1,4} is a minimal column cover for matrix B

All rows “covered” by at least one 1

10101

10011

11100

01010

1

1

1

1
1    2    3   4    5
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Unate Recursive Paradigm
Application – Complement

 For each minimal column cover create a cube with opposite 
column literal from F

 Example
By selecting a column cover {1,4}, a’d is a cube of f’

1 0

0 0 1

1 1 1

1 0 1

a b c d e

  
 

 
 

0 1 0 1 0

0 0 1 1 1

1 1 0 0 1

1 0 1 0 1

a b c d e

1    2   3     4    5 1    2   3    4    5
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Unate Recursive Paradigm
Application – Complement

 The set of all minimal column covers = cover of f

 Example

 {(1,4), (2,3), (2,5), (4,5)} is the set of all minimal covers. 
This translates into:

0 1 0 1 0

0 0 1 1 1

1 1 0 0 1

1 0 1 0 1

a b c d e

1 0

0 0 1

1 1 1

1 0 1

a b c d e

  
 

 
 

f ad bc be de   
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Unate Recursive Paradigm
Application – Complement

 Theorem (unate complement theorem):
Let F be a unate cover of f. The set of cubes associated with 
the minimal column covers of B is a cube cover off.

 Proof:
We first show that any such cube c generated is in the 
offset of f, by showing that the cube c is orthogonal with 
any cube of F. 
 Note, the literals of c are the complemented literals of F. 

Since F is a unate cover, the literals of F are just the union 
of the literals of each cube of F). 

 For each cube miF, jJ such that Bij=1. 
J is the column cover associated with c. 

 Thus, (mi)j = xj  cj =xj and (mi)j =xj  cj = xj. Thus 
mic = . Thus c  f .
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Unate Recursive Paradigm
Application – Complement

 Proof (cont’d):
We now show that any minterm m f is contained in some 
cube c generated:
 First, m must be orthogonal to each cube of F. 

For each row of F, there is at least one literal of m that 
conflicts with that row. 

 The union of all columns (literals) where this happens is a 
column cover of B

 Hence this union contains at least one minimal cover and the 
associated cube contains m.
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Unate Recursive Paradigm
Application – Complement

 The unate covering problem finds a minimum 
column cover for a given Boolean matrix B
 Unate complementation is one application based on the 

unate covering problem

 Unate Covering Problem:
Given a matrix B, with Bij{0,1}, find x, with 
xi{0,1}, such that Bx  1 (componentwise
inequality) and j xj is minimized

 Sometimes we want to minimize
j cjxj

where cj is a cost associated with column j


