Logic Synthesis and Verification

Jie-Hong Roland Jiang 江介宏

Department of Electrical Engineering National Taiwan University

Fall 2012

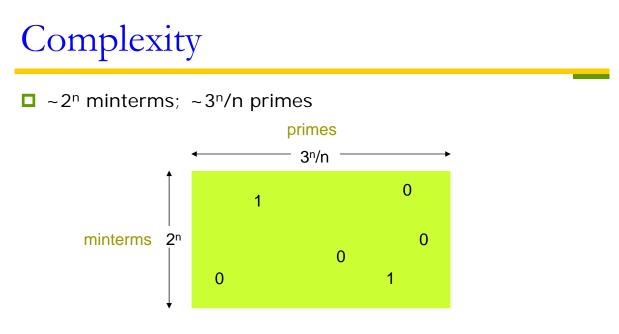
Two-Level Logic Minimization (1/2)

Reading: Logic Synthesis in a Nutshell Section 3 (§3.1-§3.2)

most of the following slides are by courtesy of Andreas Kuehlmann

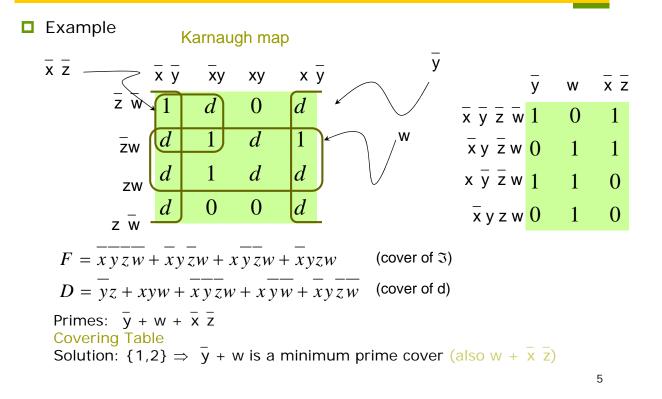
Quine-McCluskey Procedure

- Given G and D (covers for ℑ = (f,d,r) and d, respectively), find a minimum cover G* of primes where:
 f ⊆ G* ⊆ f+d (G* is a prime cover of ℑ)
- Q-M Procedure:
 - 1. Generate all primes of \mathfrak{I} , $\{P_j\}$ (i.e. primes of (f+d) = G+D)
 - 2. Generate all minterms $\{m_i\}$ of $f = G \land \neg D$
 - 3. Build Boolean matrix B where
 - $B_{ij} = 1$ if $m_i \in P_i$
 - = 0 otherwise
 - 4. Solve the minimum column covering problem for B (unate covering problem)

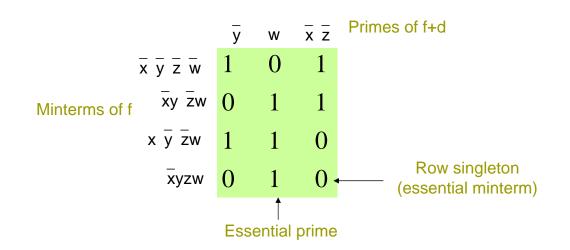


There are O(2ⁿ) rows and Ω(3ⁿ/n) columns. Moreover, minimum covering problem is NP-complete. (Hence the complexity can probably be double exponential in size of input, i.e. difficulty is O(2^{3ⁿ}))

Two-Level Logic Minimization



Covering Table



Definition. An essential prime is a prime that covers an onset minterm of f not covered by any other primes.

Covering Table Row Equality

Row equality:

In practice, many rows in a covering table are identical. That is, there exist minterms that are contained in the same set of primes.

Example

m ₁	0101101
m_2	0101101

Covering Table Row and Column Dominance

Row dominance:

A row i₁ whose set of primes is contained in the set of primes of row i₂ is said to dominate i₂.

Example

i ₁	011010
i ₂	011110

i₁ dominates i₂

Can remove row i₂ because have to choose a prime to cover i₁, and any such prime also covers i₂. So i₂ is automatically covered.

Covering Table Row and Column Dominance

Column dominance:

A column j₁ whose rows are a superset of another column j₂ is said to dominate j₂.

Example	j ₁	j ₂
	1	0
	0	0
	1	1
	0	0
	1	1

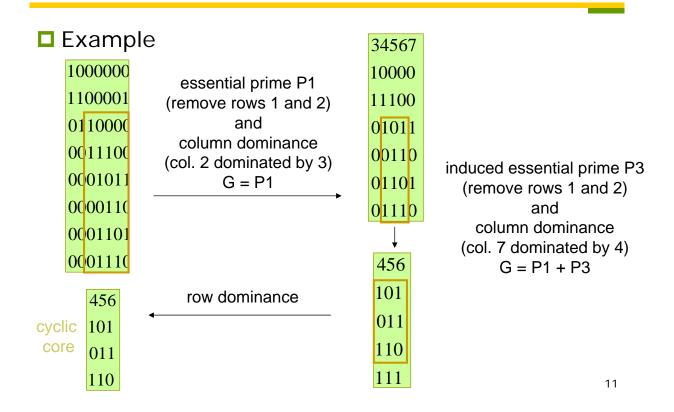
 $\Box j_1$ dominates j_2

■ We can remove column j_2 since j_1 covers all those rows and more. We would never choose j_2 in a minimum cover since it can always be replaced by j_1 .

Covering Table Table Reduction

- 1. Remove all rows covered by essential primes (columns in row singletons). Put these primes in the cover G.
- 2. Group identical rows together and remove dominated rows.
- Remove dominated columns. For equal columns, keep one prime to represent them.
- 4. Newly formed row singletons define induced essential primes.
- 5. Go to 1 if covering table decreased.
- The resulting reduced covering table is called the cyclic core. This has to be solved (unate covering problem). A minimum solution is added to G. The resulting G is a minimum cover.

Covering Table Table Reduction



Solving Cyclic Core

Best known method (for unate covering) is branch and bound with some clever bounding heuristics

□ Independent Set Heuristic:

Find a maximum set I of "independent" rows. Two rows B_{i1}, B_{i2} are independent if **not** ∃j such that B_{i1} = B_{i2} = 1. (They have no column in common.)

Example

A covering matrix B rearranged with independent sets first

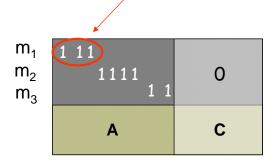
$\mathbf{B} = \begin{bmatrix} 1 & 11 \\ & 1111 \\ & & 111 \end{bmatrix}$		0
	A	С

Independent set *9* of rows

Solving Cyclic Core

Lemma: |Solution of Covering| $\geq |\mathcal{I}|$

m1 must be covered by one of the three columns

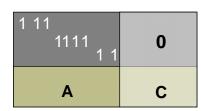


Solving Cyclic Core

- Heuristic algorithm:
 Let \$\mathcal{I}\$ = {I₁, I₂, ..., I_k} be the independent set of rows
- 1. choose $j \in I_i$ such that column j covers the most rows of A. Put Pj in G
- 2. eliminate all rows covered by column j

3.
$$\mathscr{I} \leftarrow \mathscr{I} \setminus \{I_i\}$$

- 4. go to 1 if $|\mathcal{I}| > 0$
- If B is empty, then done (in this case achieve minimum solution because of the lower bound of previous lemma attained - IMPORTANT)
- 6. If B is not empty, choose an independent set of B and go to 1



Prime Generation for Single-Output Function

Tabular method

(based on *consensus* operation, or \forall):

- Start with minterm canonical form of *F*
- Group *pairs* of adjacent minterms into cubes
- Repeat merging cubes until no more merging possible; mark (√) + remove all covered cubes.
- Result: set of primes of f.

Example

F = x' y' + w x y + x' y z' + w y' z

F	F = x'y' + wxy + x'yz' + wy'z					
	w' x' y' z' √	$w' x' y' \checkmark$ $w' x' z' \checkmark$ $x' y' z' \checkmark$	x' y' x' z'			
	$w'x'y'z \qquad \checkmark$ $w'x'yz' \qquad \checkmark$ $wx'y'z' \qquad \checkmark$ $wx'y'z' \qquad \checkmark$	$\begin{array}{cccc} x'y'z & \\ x'yz' & \\ wx'y' & \\ wx'z' & \\ wy'z \end{array}$				
	$w x' y' z \checkmark$ $w x' y z' \checkmark$	wyz' wyz'				
	w x y z' √ w x y' z √	w x y w x z				
	wxyz 🗸					

Courtesy: Maciej Ciesielski, UMASS

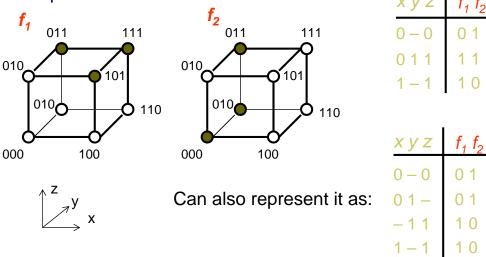
15

Prime Generation for

Multi-Output Function

Similar to single-output function, except that we should include also the primes of the products of individual functions

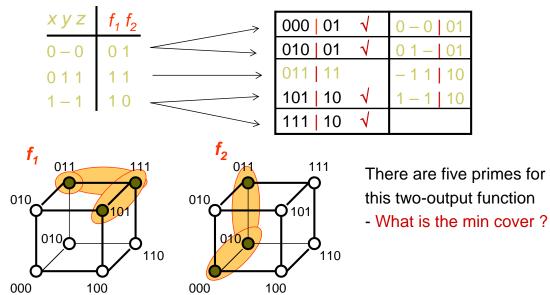
Example



Prime Generation

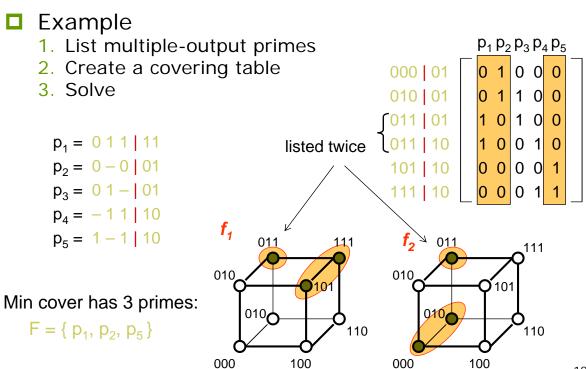
Example

Modification from single-output case: When two adjacent implicants are merged, the output parts are intersected



17

Minimize Multi-Output Cover



Prime Generation Using Unate Recursive Paragidm

Apply unate recursive paradigm with the following merge step

• (Assume we have just generated all primes of f_{x_i} and $f_{\neg x_i}$)

Theorem.

p is a prime of *f* iff *p* is maximal (in terms of containment) among the set consisting of

- **P** = $x_i q$, q is a prime of f_{x_i} , $q \not\subset f_{\neg x_i}$
- **P** = x_i 'r, r is a prime of $f_{\neg x_i}$, $r \not\subset f_{x_i}$
- **P** = $q r_i$, q is a prime of f_{x_i} , r is a prime of $f_{\neg x_i}$

Prime Generation Using Unate Recursive Paradigm

Example

- Assume q = abc is a prime of f_{x_i} . Form $p = x_i abc$.
- Suppose r = ab is a prime of $f_{\neg x_i}$. Then x_i ab is an implicant of f.

 $f = x_i abc + x_i'ab + abc + \cdots$

- Thus *abc* and $x_i^{i}ab$ are implicants, so x_iabc is not prime.
- Note: *abc* is prime because if not, $ab \subseteq f$ (or *ac*, or *bc*) contradicting *abc* prime of f_{x_i} .
- Note: $x_i ab$ is prime, since if not then either $ab \subseteq f$, $x_i a \subseteq f$, $x_i b \subseteq f$. The first contradicts abc prime of f_{x_i} and the second and third contradict ab prime of $f_{\neg x_i}$.

Summary

- Quine-McCluskey Method:
- 1. Generate cover of all primes $G = p_1 + p_2 + \dots + p_{3^n/n}$
- 2. Make G irredundant (in optimum way)

Q-M is exact, i.e., it gives an exact minimum

Heuristic Methods:

- 1. Generate (somehow) a cover of \Im using some of the primes $G = p_{i_1} + p_{i_2} + \dots + p_{i_k}$
- 2. Make G irredundant (maybe not optimally)
- 3. Keep best result try again (i.e. go to 1)