Logic Synthesis and Verification

Jie-Hong Roland Jiang 江介宏

Department of Electrical Engineering National Taiwan University

Fall 2012

Quine-McCluskey Procedure

Given G and D (covers for ℑ = (f,d,r) and d, respectively), find a minimum cover G* of primes where:
f ⊂ G* ⊂ f+d (G* is a prime cover of ℑ)

Q-M Procedure:

- 1. Generate all primes of \mathfrak{I} , $\{P_j\}$ (i.e. primes of (f+d) = G+D)
- 2. Generate all minterms $\{m_i\}$ of $f = G \land \neg D$
- 3. Build Boolean matrix B where

$$B_{ij} = 1$$
 if $m_i \in P_j$

- = 0 otherwise
- Solve the minimum column covering problem for B (unate covering problem)

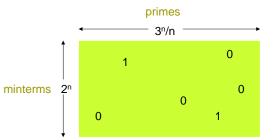
Two-Level Logic Minimization (1/2)

Reading: Logic Synthesis in a Nutshell Section 3 (§3.1-§3.2)

> most of the following slides are by courtesy of Andreas Kuehlmann

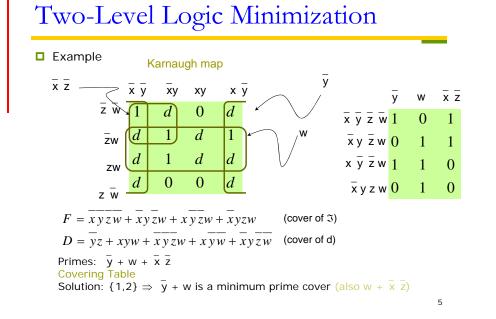
Complexity

 \square ~2ⁿ minterms; ~3ⁿ/n primes

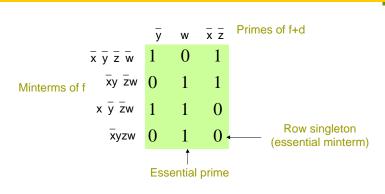


There are O(2ⁿ) rows and Ω(3ⁿ/n) columns. Moreover, minimum covering problem is NP-complete. (Hence the complexity can probably be double exponential in size of input, i.e. difficulty is O(2^{3ⁿ}))

1



Covering Table



Definition. An essential prime is a prime that covers an onset minterm of f not covered by any other primes.

Covering Table Row Equality

Row equality:

In practice, many rows in a covering table are identical. That is, there exist minterms that are contained in the same set of primes.

7

Example

- m₁ 0101101
- m₂ 0101101

Covering Table Row and Column Dominance

Row dominance:

A row i₁ whose set of primes is contained in the set of primes of row i₂ is said to dominate i₂.

Example

i ₁	011010
i_2	011110

$\Box i_1$ dominates i_2

□ Can remove row i₂ because have to choose a prime to cover i₁, and any such prime also covers i₂. So i₂ is automatically covered.

Covering Table Row and Column Dominance

Column dominance:

A column j₁ whose rows are a superset of another *column* j_2 is said to dominate j_2 .

j₂

Example

 \Box j₁ dominates j₂

 \Box We can remove column j_2 since j_1 covers all those rows and more. We would never choose j_2 in a minimum cover since it can always be replaced by j_1 .

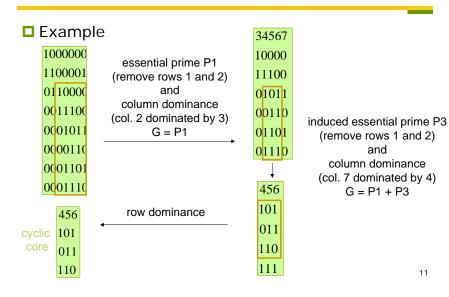
9

11

Covering Table Table Reduction

- 1. Remove all rows covered by essential primes (columns in row singletons). Put these primes in the cover G.
- 2. Group identical rows together and remove dominated rows.
- 3. Remove dominated columns. For equal columns, keep one prime to represent them.
- 4. Newly formed row singletons define induced essential primes.
- 5. Go to 1 if covering table decreased.
- □ The resulting reduced covering table is called the cyclic core. This has to be solved (unate covering problem). A minimum solution is added to G. The resulting G is a minimum cover.

Covering Table Table Reduction



Example 11 B=

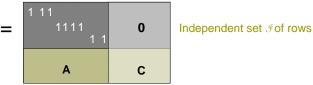
Solving Cyclic Core

Best known method (for unate covering) is branch and bound with some clever bounding heuristics

□ Independent Set Heuristic:

Find a maximum set I of "independent" rows. Two rows B_{i1}, B_{i2} are independent if **not** $\exists j$ such that $B_{i_1i} = B_{i_2i} = 1$. (They have no column in common.)

A covering matrix B rearranged with independent sets first

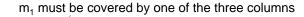


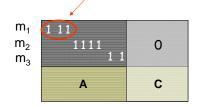
12

Solving Cyclic Core

Lemma:

|Solution of Covering| $\geq |\mathcal{I}|$





x'z'

Prime Generation for Single-Output Function

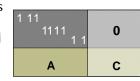
F = x'y' + wxy + x'yz' + wy'zTabular method (based on *consensus* operation, or \forall): w'x'y'z' 1 w'x'y'w'x'z' Start with minterm canonical form of x'y'z' $\sqrt{}$ Group *pairs* of adjacent minterms into cubes x'y'z 🗸 w'x'y'z γ Repeat merging cubes until no more merging possible; mark (\checkmark) + remove x' y z' w'x'yz' all covered cubes. w x' y' w x' y' z' 🔰 Result: set of *primes* of *f*. w x'z' wx'y'z V wy'z Example wx'vz' $\sqrt{}$ wyz' F = X' Y' + W X Y + X' Y Z' + W Y' Zw x y wxyz' WXZ wxy'z wxyz

Courtesy: Maciei Ciesielski, UMASS 15

Solving Cyclic Core

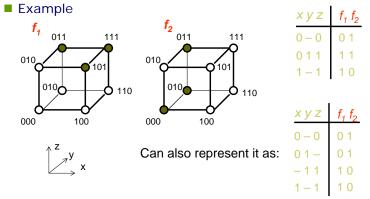
Heuristic algorithm:

- Let $\mathcal{I} = \{ I_1, I_2, ..., I_k \}$ be the independent set of rows
- 1. choose $\mathbf{j} \in \mathbf{I}_i$ such that column \mathbf{j} covers the most rows of A. Put Pj in G
- eliminate all rows covered by column j 2.
- 3. $\mathcal{I} \leftarrow \mathcal{I} \setminus \{ \mathbf{I}_i \}$
- qo to 1 if $|\mathcal{I}| > 0$ 4.
- If B is empty, then done (in this case 5. achieve minimum solution because of the lower bound of previous lemma attained - IMPORTANT)
- 6. If B is not empty, choose an independent set of B and go to 1



Prime Generation for Multi-Output Function

□ Similar to *single-output* function, except that we should include also the primes of the products of individual functions

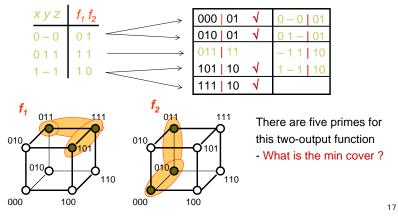


16

Prime Generation

Example

Modification from single-output case: When two adjacent implicants are merged, the output parts are intersected



Prime Generation Using Unate Recursive Paragidm

Apply unate recursive paradigm with the following merge step

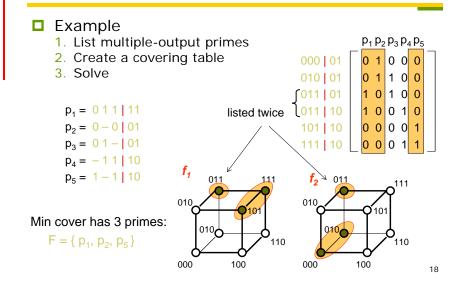
• (Assume we have just generated all primes of f_{x_i} and $f_{\neg x_i}$)

□ Theorem.

p is a prime of f iff p is maximal (in terms of containment) among the set consisting of

- **P** = $x_i q$, q is a prime of f_{x_i} , $q \not\subset f_{\neg x_i}$
- **P** = x_i 'r, r is a prime of $f_{\neg x_i}$, $r \not\subset f_{x_i}$
- **P** = $q r_i q$ is a prime of f_{x_i} , r is a prime of $f_{\neg x_i}$

Minimize Multi-Output Cover



Prime Generation Using Unate Recursive Paradigm

Example

- Assume q = abc is a prime of f_{x_i} . Form $p = x_i abc$.
- Suppose r = ab is a prime of $f_{\neg x_i}^{l}$. Then $x_i^{\prime}ab$ is an implicant of f.

 $f = x_i abc + x_i'ab + abc + \cdots$

- **Thus** *abc* and x_i *ab* are implicants, so $x_i abc$ is not prime.
- Note: *abc* is prime because if not, $ab \subseteq f$ (or *ac*, or *bc*) contradicting *abc* prime of f_{x_i} .
- Note: $x_i^{i}ab$ is prime, since if not then either $ab \subseteq f$, $x_i^{i}a \subseteq f$, $x_i^{i}b \subseteq f$. The first contradicts abc prime of f_{x_i} and the second and third contradict ab prime of $f_{\neg x_i}$.

Summary

- □ Quine-McCluskey Method:
- 1. Generate cover of all primes $G = p_1 + p_2 + \dots + p_{3^n/n}$
- 2. Make G irredundant (in optimum way)
 - Q-M is exact, i.e., it gives an exact minimum
- Heuristic Methods:
- 1. Generate (somehow) a cover of 3 using some of the primes $G = p_{i_1} + p_{i_2} + \dots + p_{i_k}$ 2. Make G irredundant (maybe not optimally)
- 3. Keep best result try again (i.e. go to 1)