Logic Synthesis and Verification

Jie-Hong Roland Jiang 江介宏

Department of Electrical Engineering National Taiwan University

Fall 2012

Two-Level Logic Minimization (2/2)

Reading: Logic Synthesis in a Nutshell Section 3 (§3.1-§3.2)

most of the following slides are by courtesy of Andreas Kuehlmann

Heuristic Two-Level Logic Minimization ESPRESSO

 $ESPRESSO(\Im)$

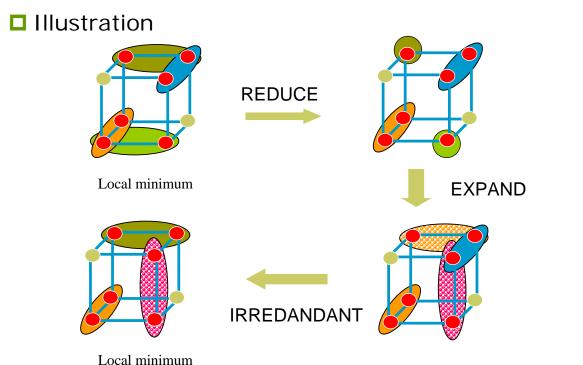
{

```
(F,D,R) \leftarrow DECODE(\Im)
F \leftarrow EXPAND(F,R)
F \leftarrow IRREDUNDANT(F,D)
E \leftarrow ESSENTIAL_PRIMES(F,D)
F \leftarrow F-E; D \leftarrow D + E
do{
do{
f \leftarrow REDUCE(F,D)
F \leftarrow EXPAND(F,R)
F \leftarrow IRREDUNDANT(F,D)
} while fewer terms in F
```

//LASTGASP $G \leftarrow REDUCE_GASP(F,D)$ $G \leftarrow EXPAND(G,R)$ $F \leftarrow IRREDUNDANT(F+G,D)$ //LASTGASP }while fewer terms in F $F \leftarrow F+E; D \leftarrow D-E$ LOWER_OUTPUT(F,D) RAISE_INPUTS(F,R) error $\leftarrow (F_{old} \subset F)$ or $(F \subset F_{old} + D)$ return (F,error)

Heuristic Two-Level Logic Minimization ESPRESSO

}



Problem:

Given a cover of cubes C for some incompletely specified function (f,d,r), find a minimum subset of cubes $S \subseteq C$ that is also a cover, i.e.

$$f \subseteq \sum_{c \in S} c \subseteq f + d$$

Idea 1:

We are going to create a function g(y) and a new set of variables $y = \{y_i\}$, one for each cube c_i . A minterm in the y-space will indicate a subset of the cubes $\{c_i\}$.

Example

y = (0, 1, 1, 0, 1, 0), i.e. $y_1'y_2y_3y_4'y_5y_6'$, represents $\{c_2, c_3, c_5\}$

5

ESPRESSO IRREDUNDANT

I Idea 2:

Create g(y) so that it is the function such that:

 $g(y^*) = 1 \iff \sum_{y^*_i=1}^{\infty} C_i$ is a cover

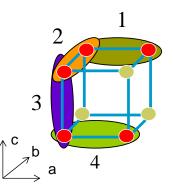
i.e. $g(y^*) = 1$ if and only if $\{c_i | y^*_i = 1\}$ is a cover.

Note: g(y) can be made positive unate (monotone increasing) in all its variables.

Example

$$f = bc + \overline{a}c + \overline{a}\overline{b} + \overline{b}\overline{c}$$

$$g(y_1, y_2, y_3, y_4) = y_1 y_4 (y_2 + y_3)$$



Note:

We want a minimum subset of cubes that covers f, that is, the largest prime of g (least literals).

Consider g': it is monotone decreasing in y (i.e. negative unate in y) e.g.

$$\overline{g}(y_1, y_2, y_3, y_4) = \overline{y}_1 + \overline{y}_4 + \overline{y}_2 \overline{y}_3$$

ESPRESSO IRREDUNDANT

Example

Create a Boolean matrix B for g':

$$\overline{g} \longrightarrow B = \begin{array}{c} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{array}$$

$$f = bc + \overline{a}c + \overline{a}\overline{b} + \overline{b}\overline{c}$$
$$\overline{g}(y_1, y_2, y_3, y_4) = \overline{y}_1 + \overline{y}_4 + \overline{y}_2\overline{y}_3$$

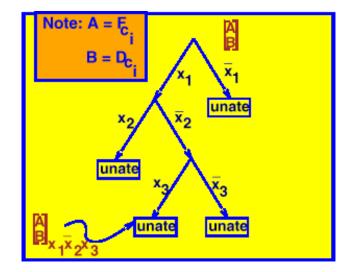
Recall a minimal column cover of B is a prime of g = (g')'
We want a *minimum* column cover of B
□E.g., {1,2,4} ⇒ y₁ y₂ y₄ (cubes 1,2,4) ⇒ {bc, a'c, b'c'}

8

Deriving g'(y)

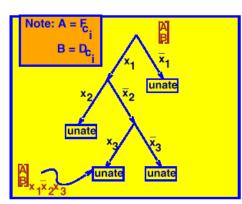
- Modify tautology algorithm:
 - $F = cover of \Im = (f, d, r)$
 - D = cover of d

■ Pick a cube $c_i \in F$ (Note: $c_i \subseteq F \Leftrightarrow F_{c_i} \equiv 1$) ■ Do the following for each cube $c_i \subseteq F$: $\begin{bmatrix} A \\ B \end{bmatrix} \equiv \begin{bmatrix} F_{C_i} \\ D_{C_i} \end{bmatrix}$



ESPRESSO IRREDUNDANT

- **Deriving** g'(y)
 - 1. All leaves must be tautologies
 - 2. g' means how can we make it not a tautology
 - Must exactly delete all rows of all -'s that are not part of D
 - 3. Each row came from some row of A/B
 - 4. Each row of A is associated with some cube of F
 - 5. Each cube of B is associated with some cube of D
 - Don't need to know which, and cannot delete its rows
 - 6. Rows that must be deleted are written as a cube
 - **L**.g. $y_1y_2y_7 \Rightarrow$ delete rows 1,3,7 of F



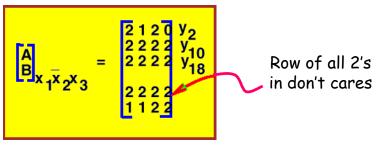
Deriving g'(y)

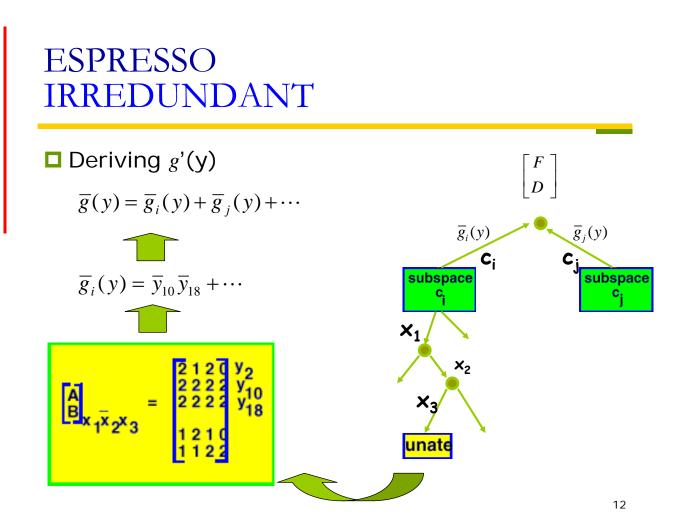
Example

Suppose unate leaf is in subspace $x_1x'_2x_3$: Thus we write down: $\overline{y_{10}}, \overline{y_{18}}$ (actually, $\overline{y_i}$ must be one of $\overline{y_{10}}, \overline{y_{18}}$). Thus, F is not a cover if we leave out cubes c_{10} , c_{18} . Unate leaf

Note:

If a row of all 2's is in don't cares, then there is no way not to have tautology at that leaf.





Summary

- Convert g'(y) into a Boolean matrix B
 Note that g(y) is unate
- 2. Find a minimum column cover of B
 - E.g., if y₁y₃y₁₈ is a minimum column cover, then the set of cubes {c₁, c₃, c₁₈ } is a minimum sub-cover of { c_i | i=1,...,k }. (Recall that a minimal column cover of B is a prime of g(y), and g(y) gives all possible sub-covers of F).
- Note: We are just doing tautology in constructing g'(y), so unate reduction is applicable

$$F = \begin{bmatrix} A & C \\ T & F^* \end{bmatrix}$$

ESPRESSO IRREDUNDANT

Summary

In Q-M, we want a maximum prime of g(y)

All primes [1011010]

B = Minterms of *f* $B \cong \overline{g} \ (y) = \overline{y}_1 \overline{y}_3 \overline{y}_4 \overline{y}_6 + \cdots$

Note: A row of B says if we leave out primes { p_1 , p_3 , p_4 , p_6 } , then we cease to have a cover

So basically, the only difference between Q-M and IRREDUNDANT is that for the latter, we just constructed a g'(y) where we did not consider all primes, but only those in some cover: $F = \{c_1, c_3, ..., c_k\}$

$\Box F \leftarrow EXPAND(F,R)$

- Problem: Take a cube c and make it prime by removing literals
- Greedy way: (uses D and not R)

\square Remove literal l_i from c (results in, say c*)

□ Test if $c^* \subseteq f+d$ (i.e. test if $(f+d)_{c^*} \equiv 1$)

- Repeat, removing valid literals in order found
- Better way: (uses R and not D)
 - Want to see all possible ways to remove maximal subset of literals
 - □ Idea: Create a function g(y) such that g(y)=1 iff literals $\{l_i | y_i = 0\}$ can be removed (or $\{l_i | y_i = 1\}$ is a subset of literals such that if kept in c, will still make $c^* \subseteq f+d$, i.e. $c^* \land r \equiv 0$)

ESPRESSO EXPAND

Main idea Outline:

- 1. Expand one cube, c_i, at a time
- 2. Build "blocking" matrix $B = B^{c_i}$
- See which other cubes c_j can be feasibly covered using B
- Choose expansion (literals to be removed) to cover most other c_j
- Note: $\bullet g(y)$ is monotone increasing
 - $B \cong \overline{g}(y)$ is easily built if we have *R*, a cover of *r*.
 - We do not need all of *R*. (reduced offset)

Make *r* unate by adding (1,1,1) to offset. Then the new offset $R_{new} = a + b \cong g'(y)$. This is simpler and easier to deal with.

ESPRESSO EXPAND

□ Blocking matrix B (for some cube c)
 ■ Given R = {r_i}, a cover of r. [ℑ = (f,d,r)]

$$B_{ij} = 1 \Leftrightarrow \begin{cases} l_j \in c \text{ and } \bar{l}_j \in r_i \\ \bar{l}_j \in c \text{ and } l_j \in r_i \end{cases}$$

B: rows indexed by offset cubes, columns indexed by literals of c

What does row i of B say?

- □ It says that if literals $\{j \mid B_{ij} = 1\}$ are removed from c, then $c^* \land r_i \neq 0$, i.e., $B_{ij} = 1$ is one reason why c is orthogonal to offset cube r_i
- □ Thus B → $g'(y) = y_1'y_3'y_{10}' + \cdots$ gives all ways that literals of c can be removed to get $c^* \not\subset f+d$ (i.e. $c^* \land r \neq 0$)

Example

$c = ab\overline{d}$	$y_1 = 1 \iff \text{keep } a$
	$y_2 = 1 \iff \text{keep } b$
$r_i = \overline{a}bd\overline{e}$	$y_3 = 1 \Leftrightarrow \text{keep } d$
$v_1 y_2 y_3 \propto a, b, \overline{d}$	$(B_i) = 101 = \overline{y}_1 \overline{y}_3 + \ldots = \overline{g}_i(y)$

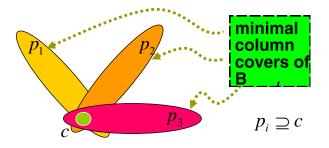
Suppose g(y) = 1 If y₁ = 1, we keep literal *a* in cube *c*. B_i means do not keep literals 1 and 3 of *c* (implies that subsequent *c** is not an implicant)

• If literals 1, 3 are removed we get $c \rightarrow c^* = b$. But $c^* \land r_i \neq 0$: $b \land a'bde' = a'bde' \neq 0$. So *b* is not an implicant.

ESPRESSO EXPAND

Example (cont'd)

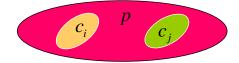
- Thus all minimal column covers ($\cong g(y)$) of B are the minimal subsets of literals of *c* that must be kept to ensure that $c^* \subseteq f + d$ (i.e. $c^* \wedge r_i = 0$)
- Thus each minimal column cover is a prime p that covers c, i.e. p ⊇ c



Expanding c_i

$F = \{ C_i \}, \Im = (f, d, r) \quad f \subseteq F \subseteq f + d$

- Q: Why do we want to expand c_i ?
- A: To cover some other c_i's



- Q: Can we cover c_i?
- A: If and only if (SCC = "smallest cube containing" also called "supercube")

equivalent to: $SCC(c_i \cup c_j) \subseteq f + d$ equivalent to: $SCC(c_i \cup c_j) \land r = 0$

literals "conflicting" between c_i , c_j can be removed and still have an implicant

21

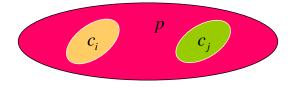
ESPRESSO EXPAND

□ Expanding c_i Can check SCC(c_i , c_j) with blocking matrix: $c_i = 12012$

$$c_i = 12120$$

implies that literals 3 and 4 must be removed for c_i^* to cover c_j

Check if columns 3, 4 of B can be removed without causing a row of all 0's



Covering function

The objective of EXPAND is to expand c_i to cover as many cubes c_j as possible. The blocking function g'(y) = 1whenever the subset of literals $\{l_i | y_i = 1\}$ yields a cube $c^* \not\subset f + d$.

DNote: $c^* = \prod_{(y_j=0)} l_j$

We now build the covering function *h*, such that:

h(y) = 1, whenever the cube $c^* \supseteq c_i$ covers another cube $c_i \subseteq F$

Note: h(y) is easy to build

■ Thus a minterm *m* of $g(y) \land h(y)$ is such that it gives $c^* \subseteq f + d$ (g(m) = 1) and covers at least one cube (h(m) = 1). In fact every cube $c^*_m \supseteq c_l$ is covered. We seek *m* which results in the most cubes covered.

ESPRESSO EXPAND

Covering function Define h(y) by a set of cubes where d_k = kth cube is:

$$d_{k} = \emptyset \quad \text{if } \quad SCC[c_{i} \cup c_{k}] \not\subset f + d \quad \text{else}$$

$$d_{k}^{j} = \begin{cases} -y_{j} \quad \text{if } c_{k}^{j} \not\subset c_{i}^{j} \text{ i.e.} &\begin{cases} 2 \not\subset 1 \\ 2 \not\subset 0 \\ 0 \not\subset 1 \\ 1 \not\subset 0 \end{cases}$$
2 \quad \text{otherwise} \end{cases}

 d_{k}^{j} : jth literal of kth cube

Every d_k indicates the minimal expansion to cover c_k , that is, which literals that we have to leave out to minimally cover c_k . Essentially $d_k \neq \emptyset$ if cube c_k can be feasibly covered by expanding cube c_i .

Note that $h(y) = d_1 + d_2 + \dots + d_{|F|-1}$ (one for each cube of F, except c_i) is monotone decreasing.

Covering function

- We want a minterm *m* of $g(y) \land h(y)$ contained in a maximum number of d_k 's
- In Espresso, we build a Boolean covering matrix C (note that h(y) is negative unate) representing h(y) and solve this problem with greedy heuristics

Note:

$B \cong \overline{g}(y)$ but $C \cong \widetilde{h}(y) \supseteq h(y)$	<i>C</i> = <	 010110 101011	$B = \langle$	 110110 101010	
ĩ		100101		101001	
h(y) is an over-approximation of $h(y)$, e.g., by removing the $d_k = \emptyset$ rule in the previous slide)	

25

ESPRESSO EXPAND

Covering function

$$C = \begin{cases} \dots \\ 010110 \\ 101011 \\ 100101 \\ \dots \end{cases} \qquad B = \begin{cases} \dots \\ 110110 \\ 101010 \\ 101001 \\ \dots \end{cases}$$

- Want a set of columns such that if eliminated from B and C results in no empty rows of B and a maximum of empty rows in C
- Note: A "1" in C can be interpreted as a reason why c* does not cover c_j

Endgame

• What do we do if $h(y) \equiv 0$?

This could be important in many hard problems, since it is often the case that $h(y) \equiv 0$

Some things to try:

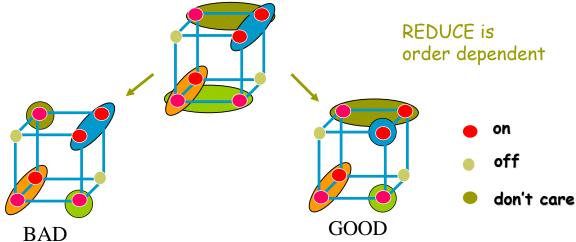
Generate largest prime covering c_i

- Generate largest prime covering cover most care points of another cube c_k
- Coordinate two or more cube expansions, i.e. try to cover another cube by a combination of several other cube expansions

ESPRESSO REDUCE

Problem:

Given a cover F and $c \in F$, find the smallest cube $\underline{c} \subseteq c$ such that F\{ c } + { \underline{c} } is still a cover \underline{c} is called the maximally reduced cube of c



Example $F = ac + bc + \overline{bc} + \overline{ac}$ $F = ac + bc + \overline{bc} + \overline{ac}$ $a'c' \qquad a'c' \qquad a'c' \qquad b'c' \qquad a'c' \qquad b'c' \qquad b'c' \qquad contrast and a'c' \qquad b'c' \qquad contrast and a'c' \ contrest and a'c' \ contrast and a'c' \ contrest and a'c' \$

REDUCE is order dependent !

ESPRESSO REDUCE

```
Algorithm REDUCE(F,D) {

F \leftarrow ORDER(F)

for(1 \leq j \leq |F|) {

\underline{c}_{j} \leftarrow MAX_REDUCE(c,F,D)

F \leftarrow (F\cup{\underline{c}_{j}}) \{c_{j}}

}

return F

}
```

Main Idea: Make a prime not a prime but still maintain cover:

 $\{c_1, \dots, c_i, \dots, c_k\} \rightarrow \{c_1, \dots, c_{i-1}, \underline{c}_i, c_{i+1}, \dots, c_k\}$ But $f \subseteq \sum_{j=0}^{i-1} c_j + \underline{c}_i + \sum_{j=i+1}^k c_j \subseteq f + d$

- To get out of a local minimum (prime and irredundant is local minimum)
- After reduce, have non-primes and can expand again in different directions

Since EXPAND is "smart", it may know best direction

ESPRESSO REDUCE

 $F = \{c_1, c_2, ..., c_k\}, D = \{d_1, ..., d_m\}$ (F and D are covers of an incompletely specified function and a completely specified function, respectively.)

$$F(i) = (F + D) \setminus \{ c_i \}$$

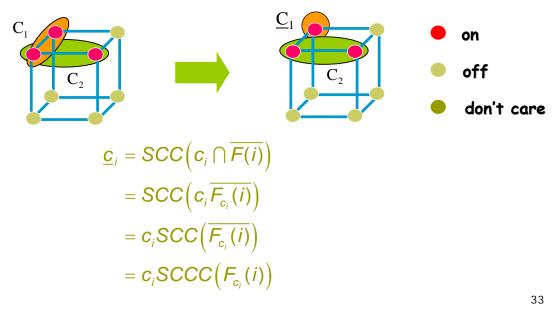
= { c₁, c₂, ..., c_{i-1}, c_{i+1}, ..., c_k, d₁, ..., d_m}

Reduced cube:

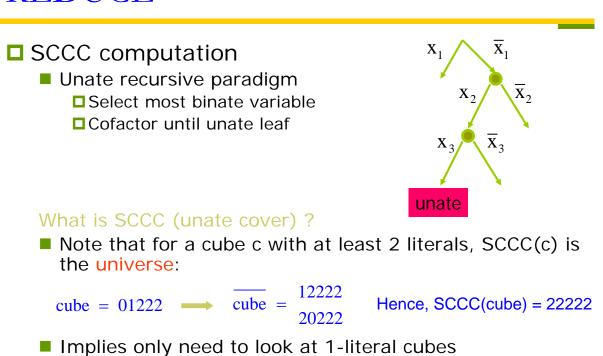
 \underline{c}_{i} = smallest cube containing ($c_{i} \cap \overline{F}(i)$)

- Note that c_i ∩ F(i) is the set of points uniquely covered by c_i (and not by any other c_i or D).
- Thus, <u>G</u> is the smallest cube containing the minterms of G which are not in F(i).

SCC: "smallest cube containing", i.e., supercube
 SCCC: "smallest cube containing complement"



ESPRESSO REDUCE



SCCC computation

SCCC(U) = γ for a unate cover U

Claim

- If unate cover has row of all 2's except one 0, then complement is in x_i , i.e. $\gamma_i = 1$
- If unate cover has row of all 2's except one 1, then complement is in x_i ', i.e. $\gamma_i = 0$

DOtherwise, in both subspaces, i.e. $\gamma_i = 2$

Finally

$$SCCC(c_1 + c_2 + \dots + c_k) = SCC(\overline{c_1}\overline{c_2}\dots\overline{c_k})$$
$$= SCC(\overline{c_1})\cap \dots \cap SCC(\overline{c_k})$$

ESPRESSO REDUCE

- SCCC computation Example 1: $f = a + bc + \overline{d} \Rightarrow \overline{f} = \overline{a}(\overline{b} + \overline{c})d \subseteq \overline{a}d$
 - Note: 0101 and 0001 are both in f. So SCCC could not have literal b or b.

Example 2.	2	2	2	2	0
Example 2:	0	2	2	2 2 2 1	2
	U(unate) = 2	1	1	2	2
	2	1	2	1	0
	1				\uparrow

Note that columns 1 and 5 are essential: they must be in every minimal cover. So $\neg U = x_1 x_5 (...)$. Hence SCCC(U) = $x_1 x_5$

SCCC computation Example 2 (cont'd):

 $U = \overline{x_1} + \overline{x_5} + x_2(x_3 + x_4)$ $\overline{U} = x_1 x_5(\overline{x_2} + \overline{x_3} \overline{x_4})$ $1 \quad 0 \quad 1 \quad 1 \quad 1$ $1 \quad 0 \quad 0 \quad 1 \quad 1$ $1 \quad 0 \quad 0 \quad 1 \quad 1$ $1 \quad 0 \quad 0 \quad 1 \quad 1$ $1 \quad 0 \quad 0 \quad 1 \quad 1$ $\overline{U}(unate) = 1 \quad 2 \quad 0 \quad 0 \quad 1 \subseteq 12221$ $\uparrow \quad \uparrow \quad \uparrow$ $1 \quad 0 \quad 0 \quad 0 \quad 1$ $1 \quad 0 \quad 0 \quad 0 \quad 1$ $1 \quad 0 \quad 0 \quad 0 \quad 1$ $1 \quad 0 \quad 0 \quad 0 \quad 1$ $1 \quad 0 \quad 0 \quad 0 \quad 1$ $1 \quad 0 \quad 0 \quad 0 \quad 1$ $1 \quad 0 \quad 0 \quad 0 \quad 1$ $1 \quad 0 \quad 0 \quad 0 \quad 1$

The marked columns contain both 0's and 1's. But every prime of $\overline{\rm U}$ contains literals $x_{\rm 1}$, $x_{\rm 5}$

37

ESPRESSO REDUCE

□ SCCC computation

At unate leaves

 $n = SCCC(unate) = \emptyset$ if row of all 2's

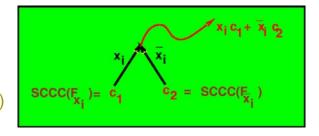
n $_{j} = \begin{cases} x_{j} & \text{if column } j \text{ has a row singleton with a 0 in it} \\ - & x_{j} & \text{if column } j \text{ has a row singleton with a 1 in it} \\ 2 & \text{otherwise} \end{cases}$

□Hence unate leaf is easy !

SCCC computation

■ Merging □ We need to produce $SCCC(f) = SCC(x_ic_1 + \overline{x}_ic_2) = \gamma$

 $\gamma = I_1 I_2 \dots I_k$ $\mathbf{X}_i \in \gamma \Leftrightarrow \mathbf{C}_2 = \emptyset$ $\overline{\mathbf{X}}_i \in \gamma \Leftrightarrow \mathbf{C}_1 = \emptyset$ $I_{j \neq i} \in \gamma \Leftrightarrow (I_j \in \mathbf{C}_1) \land (I_j \in \mathbf{C}_2)$



$\Box \text{ If } c_1 \wedge c_2 \neq \emptyset, \text{ then } \gamma_i = 2$

- because minterms with x_i and ¬x_i literals both exist, and thus
 (SCC(x_ic₁ + x_ic₂))_i = 2
- □ If $I_j \notin c_1$ or $I_j \notin c_2$, then $\gamma_j = 2$ (where $I_j = x_j$ or $\neg x_j$) • because minterms with x_j and $\neg x_j$ literals both exist □ If $I_j \in c_1$ and $\neg I_j \in c_2$, then $\gamma_j = 2$.

39

ESPRESSO

```
ESPRESSO(\Im)
{
(F,D,R) \leftarrow DECODE(\Im)
F \leftarrow EXPAND(F,R)
F \leftarrow IRREDUNDANT(F,D)
E \leftarrow ESSENTIAL_PRIMES(F,D)
F \leftarrow F-E; D \leftarrow D + E
do{
do{
F \leftarrow REDUCE(F,D)
F \leftarrow EXPAND(F,R)
F \leftarrow IRREDUNDANT(F,D)
}
while fewer terms in F
```

```
//LASTGASP

G \leftarrow REDUCE_GASP(F,D)

G \leftarrow EXPAND(G,R)

F \leftarrow IRREDUNDANT(F+G,D)

//LASTGASP

}while fewer terms in F

F \leftarrow F+E; D \leftarrow D-E

LOWER_OUTPUT(F,D)

RAISE_INPUTS(F,R)

error \leftarrow (F_{old} \not\subset F) or (F \not\subset F_{old} + D)

return (F,error)
```

ESPRESSO LASTGASP

Reduce is order dependent: E.g., expand can't do anything with that produced by REDUCE 2. REDUCE 2 1 GOOD

Maximal Reduce:

$$\underline{c}_{i}^{M} = \operatorname{SCC}(c_{i} \cap \overline{F(i)}) = c_{i} \cap \operatorname{SCCC}(F(i)_{c_{i}}) \quad \forall i$$

i.e., we reduce all cubes as if each were the first one. Note: $\{\underline{c_1}^M, \underline{c_2}^M, ...\}$ is not a cover

ESPRESSO LASTGASP

■ Now EXPAND, but try to cover only \underline{c}_j^M s. ■ We call EXPAND(G,R), where $G = \{\underline{c}_1^M, \underline{c}_2^M, \dots, \underline{c}_k^M\}$

If a covering is possible, take the resulting prime:

$$f + d \supseteq p_i \supseteq \underline{c}_i^M \, \mathsf{U} \, \underline{c}_j^M$$

and add to F:

$$\tilde{F} = F \mathsf{U} \{ p_i \}$$

Since F is a cover, so is \widetilde{F} . Now apply IRREDUNDANT on \widetilde{F} .

What about "supergasp" ?

Main Idea: Generally, think of ways to throw in a few more primes and then use IRREDUNDANT. If all primes generated, then just Quine-McCluskey

