Logic Synthesis and Verification

Jie-Hong Roland Jiang 江介宏

Department of Electrical Engineering National Taiwan University

Fall 2012

Heuristic Two-Level Logic Minimization ESPRESSO

ESPRESSO(3)

 $(F,D,R) \leftarrow DECODE(\mathfrak{J})$ $F \leftarrow EXPAND(F,R)$ $F \leftarrow IRREDUNDANT(F,D)$ $E \leftarrow ESSENTIAL_PRIMES(F,D)$ $F \leftarrow F-E; D \leftarrow D + E$ $do{$ $do{}$ $F \leftarrow REDUCE(F,D)$ $F \leftarrow EXPAND(F,R)$ $F \leftarrow IRREDUNDANT(F,D)$ $} while fewer terms in F$

1

3

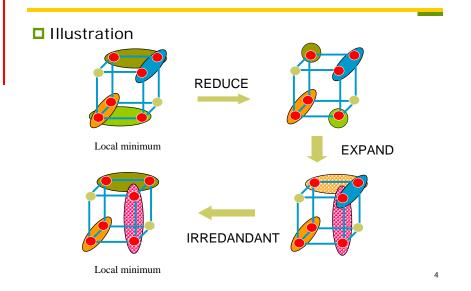
Two-Level Logic Minimization (2/2)

Reading: Logic Synthesis in a Nutshell Section 3 (§3.1-§3.2)

> most of the following slides are by courtesy of Andreas Kuehlmann

> > 2

Heuristic Two-Level Logic Minimization ESPRESSO



ESPRESSO IRREDUNDANT

Problem:

Given a cover of cubes C for some incompletely specified function (f,d,r), find a minimum subset of cubes $S \subseteq C$ that is also a cover, i.e.

 $f \subseteq \sum_{c \in S} c \subseteq f + d$

We are going to create a function g(y) and a new set of variables $y = \{y_i\}$, one for each cube c_i . A minterm in the y-space will indicate a subset of the cubes $\{c_i\}$.

Example

Idea 1:

y = (0,1,1,0,1,0), i.e. $y_1'y_2y_3y_4'y_5y_6'$, represents $\{c_2,c_3,c_5\}$

ESPRESSO IRREDUNDANT

Idea 2:

Create g(y) so that it is the function such that:

 $g(y^*) = 1 \iff \sum_{y^*_i=1}^{\infty} c_i$ is a cover

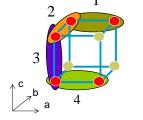
i.e. $g(y^*) = 1$ if and only if $\{c_i | y^*_i = 1\}$ is a cover.

Note: g(y) can be made positive unate (monotone increasing) in all its variables.

ESPRESSO IRREDUNDANT

Example

$$f = bc + \overline{a}c + \overline{a}\overline{b} + \overline{b}\overline{c}$$



Note:

We want a minimum subset of cubes that covers f, that is, the largest prime of g (least literals).

Consider g': it is monotone decreasing in y (i.e. negative unate in y) e.g.

$$\overline{g}(y_1, y_2, y_3, y_4) = \overline{y}_1 + \overline{y}_4 + \overline{y}_2 \overline{y}_3$$

 $g(y_1, y_2, y_3, y_4) = y_1 y_4 (y_2 + y_3)$

ESPRESSO IRREDUNDANT

Example

Create a Boolean matrix B for g':

$$\overline{g} \longrightarrow B = \begin{array}{c} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{array} \quad f = b \\ \overline{g}(y_1, y_2) = 0 \\ \overline{g}(y_1, y_2) =$$

 $= bc + \overline{a}c + \overline{a}\overline{b} + \overline{b}\overline{c}$ $(y_1, y_2, y_3, y_4) = \overline{y}_1 + \overline{y}_4 + \overline{y}_2\overline{y}_3$

Recall a minimal column cover of B is a prime of g = (g')'
 We want a *minimum* column cover of B
 □ E.g., {1,2,4} ⇒ y₁ y₂ y₄ (cubes 1,2,4) ⇒ {bc, a'c, b'c'}

7

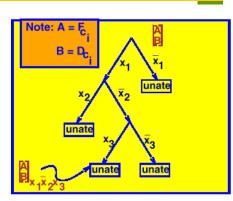
5

ESPRESSO IRREDUNDANT

Deriving g'(y)

- Modify tautology algorithm:
 F = cover of S=(f,d,r)
 D = cover of d
- Pick a cube $c_i \in F$ (Note: $c_i \subseteq F \Leftrightarrow F_{c_i} \equiv 1$) ■ Do the following for each cube $c_i \subseteq F$:

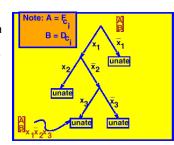
$\begin{bmatrix} A \\ B \end{bmatrix} \equiv \begin{bmatrix} F_{C_i} \\ D_{C_i} \end{bmatrix}$



ESPRESSO IRREDUNDANT

Deriving g'(y)

- 1. All leaves must be tautologies
- 2. g' means how can we make it not a tautology
 - Must exactly delete all rows of all -'s that are not part of D
- 3. Each row came from some row of A/B
- 4. Each row of A is associated with some cube of F
- 5. Each cube of B is associated with some cube of D
 - Don't need to know which, and cannot delete its rows
- 6. Rows that must be deleted are
 - written as a cube **L**.g. $y_1y_2y_7 \Rightarrow$ delete rows 1,3,7 of F

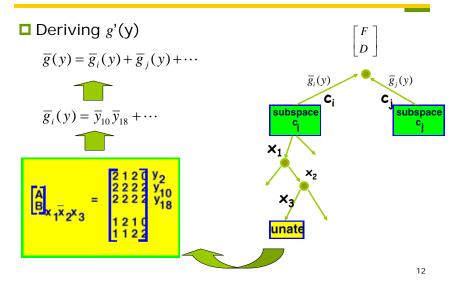


10

ESPRESSO IRREDUNDANT

\Box Deriving g'(y)Example Suppose unate leaf is in subspace $x_1x'_2x_3$: Thus we write down: $\overline{y_{10}} \overline{y_{18}}$ (actually, $\overline{y_i}$ must be one of $\overline{y_{10}} , \overline{y_{18}}$). Thus, F is not a cover if we leave out cubes c_{10} , c_{18} . Unate leaf Note: If a row of all 2's is in don't cares, then there 2222 Row of all 2's = B_{x 1}x 2x 3 is no way not to have in don't cares tautology at that leaf. 2 2 2 2 1 1 2 2

ESPRESSO IRREDUNDANT



ESPRESSO IRREDUNDANT

Summary

- 1. Convert g'(y) into a Boolean matrix B
 - **D** Note that g(y) is unate
- 2. Find a minimum column cover of B
 - E.g., if y₁y₃y₁₈ is a minimum column cover, then the set of cubes {c₁, c₃, c₁₈} is a minimum sub-cover of { c_i | i=1,...,k }. (Recall that a minimal column cover of B is a prime of g(y), and g(y) gives all possible sub-covers of F).
- Note: We are just doing tautology in constructing g'(y), so unate reduction is applicable

ESPRESSO EXPAND

$\Box F \leftarrow EXPAND(F,R)$

- Problem: Take a cube c and make it prime by removing literals
- Greedy way: (uses D and not R)
 □ Remove literal *l_i* from c (results in, say c*)
 □ Test if c* ⊆ f+d (i.e. test if (f+d)_{c*} = 1)
 □ Repeat, removing valid literals in order found
- Better way: (uses R and not D)

Want to see all possible ways to remove maximal subset of literals

□ Idea: Create a function g(y) such that g(y)=1 iff literals $\{l_i | y_i = 0\}$ can be removed (or $\{l_i | y_i = 1\}$ is a subset of literals such that if kept in c, will still make c* \subseteq f+d, i.e. c* \land r \equiv 0)

ESPRESSO IRREDUNDANT

Summary

[1011010]

B = Minterms of *f*

 $B \cong \overline{g}(y) = \overline{y}_1 \overline{y}_3 \overline{y}_4 \overline{y}_6 + \cdots$

Note: A row of B says if we leave out primes { p_1 , p_3 , p_4 , p_6 } , then we cease to have a cover

So basically, the only difference between Q-M and IRREDUNDANT is that for the latter, we just constructed a g'(y) where we did not consider all primes, but only those in some cover: $F = \{c_1, c_3, ..., c_k\}$

ESPRESSO EXPAND

Main idea

Outline:

- 1. Expand one cube, c_i, at a time
- 2. Build "blocking" matrix $B = B^{c_i}$
- 3. See which other cubes $c_{j}\ \text{can be feasibly covered using }B$
- 4. Choose expansion (literals to be removed) to cover most other $\ensuremath{c_j}$

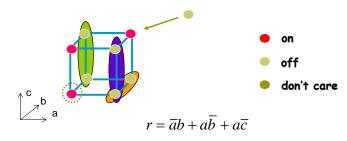
Note: $\bullet g(y)$ is monotone increasing

- $B \cong \overline{g}(y)$ is easily built if we have *R*, a cover of *r*.
- We do not need all of *R*. (reduced offset)

13

ESPRESSO EXPAND

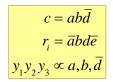
Reduced offset



Make *r* unate by adding (1,1,1) to offset. Then the new offset $R_{\text{new}} = a + b \cong g'(y)$. This is simpler and easier to deal with.

ESPRESSO EXPAND

Example



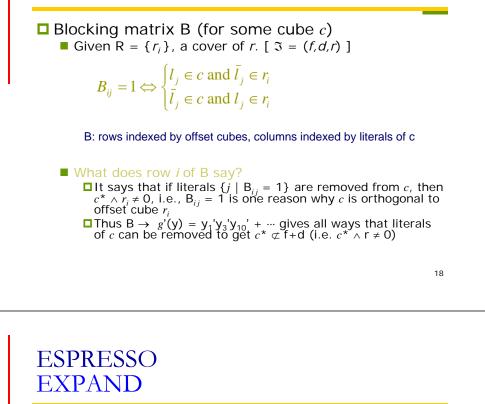
$y_1 = 1 \Leftrightarrow$	keep <i>a</i>
$y_2 = 1 \Leftrightarrow$	keep b
$y_3 = 1 \Leftrightarrow$	keep d
$(B_i)=101$	$\mathbf{l} = \overline{y}_1 \overline{y}_3 + \ldots = \overline{g}_i(y)$

Suppose g(y)=1

If y₁ = 1, we keep literal *a* in cube *c*.
 B_i means do not keep literals 1 and 3 of *c* (implies that subsequent *c** is not an implicant)

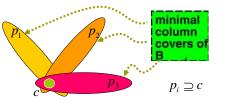
• If literals 1, 3 are removed we get $c \rightarrow c^* = b$. But $c^* \land r_i \neq 0$: $b \land a'bde' = a'bde' \neq 0$. So *b* is not an implicant.

ESPRESSO EXPAND



Example (cont'd)

- Thus all minimal column covers (≅ g(y)) of B are the minimal subsets of literals of c that must be kept to ensure that c* ⊆ f + d (i.e. c* ∧ r_i = 0)
- Thus each minimal column cover is a prime p that covers c, i.e. $p \supseteq c$



ESPRESSO EXPAND

Expanding c_i

 $F = \{ c_i \}, \ \Im = (f, d, r) \quad f \subseteq F \subseteq f + d$

Q: Why do we want to expand c_i? A: To cover some other c_i's

- Q: Can we cover c_i ?
- A: If and only if (SCC = "smallest cube containing" also called "supercube")
- equivalent to: $SCC(c_i \cup c_j) \subseteq f + d$

equivalent to: $SCC(c_i \cup c_j) \land r = 0$ *literals "conflicting" between* c_i , c_j can be removed and still have an implicant

21

ESPRESSO EXPAND

Covering function

The objective of EXPAND is to expand c_i to cover as many cubes c_j as possible. The blocking function g'(y)=1 whenever the subset of literals {l_i | y_i=1} yields a cube c* ⊄ f + d.

Note:
$$c^* = \prod_{(v_i=0)} l_i$$

We now build the covering function *h*, such that:

h(y) = 1, whenever the cube $c^* \supseteq c_i$ covers another cube $c_i \subseteq F$

■Note: *h(y)* is easy to build

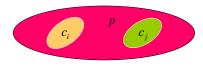
□ Thus a minterm *m* of $g(y) \land h(y)$ is such that it gives $c^* \subseteq f + d$ (g(m) = 1) and covers at least one cube (h(m) = 1). In fact every cube $c^*_m \supseteq c_i$ is covered. We seek *m* which results in the most cubes covered.

ESPRESSO EXPAND

Expanding c_i Can check SCC(c_i , c_j) with blocking matrix: $c_i = 12012$ $c_i = 12120$

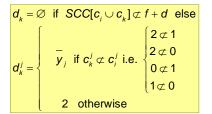
implies that literals 3 and 4 must be removed for c_i^* to cover c_i

Check if columns 3, 4 of B can be removed without causing a row of all 0's



ESPRESSO EXPAND

Covering function Define h(y) by a set of cubes where d_k = kth cube is:



 d_k^{j} : j^{th} literal of k^{th} cube

Every d_k indicates the minimal expansion to cover c_k , that is, which literals that we have to leave out to minimally cover c_k . Essentially $d_k \neq \emptyset$ if cube c_k can be feasibly covered by expanding cube c_i .

Note that $h(y) = d_1 + d_2 + \dots + d_{|F|-1}$ (one for each cube of F, except c_) is monotone decreasing.

ESPRESSO EXPAND

Covering function

- We want a minterm *m* of g(y)∧h(y) contained in a maximum number of d_k's
- In Espresso, we build a Boolean covering matrix C (note that h(y) is negative unate) representing h(y) and solve this problem with greedy heuristics

Note:

$$B \cong \overline{g}(y)$$

but $C \cong \widetilde{h}(y) \supset h(y)$

 $\tilde{h}(y)$ is an over-approximation of h(y), e.g., by removing the d_k= \emptyset rule in the previous slide

25

ESPRESSO EXPAND

Endgame

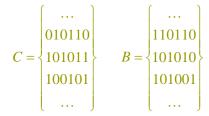
- What do we do if $h(y) \equiv 0$?
 - This could be important in many hard problems, since it is often the case that $h(y) \equiv 0$

Some things to try:

- Generate largest prime covering c_i
- \blacksquare Generate largest prime covering cover most care points of another cube c_k
- Coordinate two or more cube expansions, i.e. try to cover another cube by a combination of several other cube expansions

ESPRESSO EXPAND

Covering function

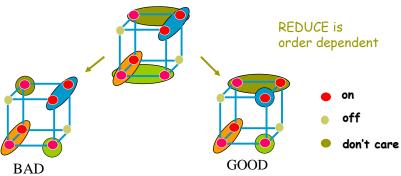


- Want a set of columns such that if eliminated from B and C results in no empty rows of B and a maximum of empty rows in C
- Note: A "1" in C can be interpreted as a reason why c* does not cover c_j

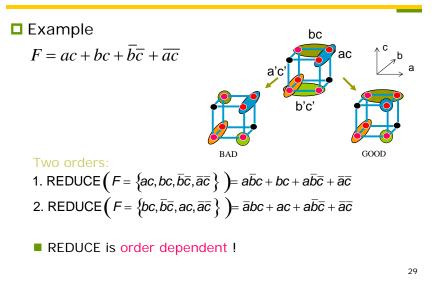
ESPRESSO REDUCE

Problem:

Given a cover F and $c \in F$, find the smallest cube $\underline{c} \subseteq c$ such that $F \{ c \} + \{ \underline{c} \}$ is still a cover \blacksquare c is called the maximally reduced cube of c



ESPRESSO REDUCE



ESPRESSO REDUCE

Main Idea: Make a prime not a prime but still maintain cover:

 $\{c_1, \dots, c_i, \dots, c_k\} \rightarrow \{c_1, \dots, c_{i-1}, \underline{c}_i, c_{i+1}, \dots, c_k\}$ But $f \subseteq \sum_{j=0}^{i-1} c_j + \underline{c}_i + \sum_{j=i+1}^k c_j \subseteq f + d$

- To get out of a local minimum (prime and irredundant is local minimum)
- After reduce, have non-primes and can expand again in different directions

Since EXPAND is "smart", it may know best direction

ESPRESSO REDUCE

```
Algorithm REDUCE(F,D) {

F \leftarrow ORDER(F)

for(1 \leq j \leq |F|) {

\underline{c}_{j} \leftarrow MAX_REDUCE(c,F,D)

F \leftarrow (F\cup{\underline{c}_{j}}) \{c_{j}}

}

return F

}
```

ESPRESSO REDUCE

 $F = \{c_1, c_2, ..., c_k\}, D = \{d_1, ..., d_m\}$ (F and D are covers of an incompletely specified function and a completely specified function, respectively.)

 $F(\mathbf{i}) = (F + D) \setminus \{ c_{\mathbf{i}} \}$ = { c₁, c₂, ..., c_{i-1}, c_{i+1}, ..., c_k, d₁, ..., d_m}

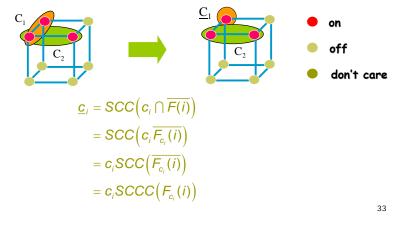
Reduced cube:

 \underline{c}_{i} = smallest cube containing ($c_{i} \cap \overline{F}(i)$)

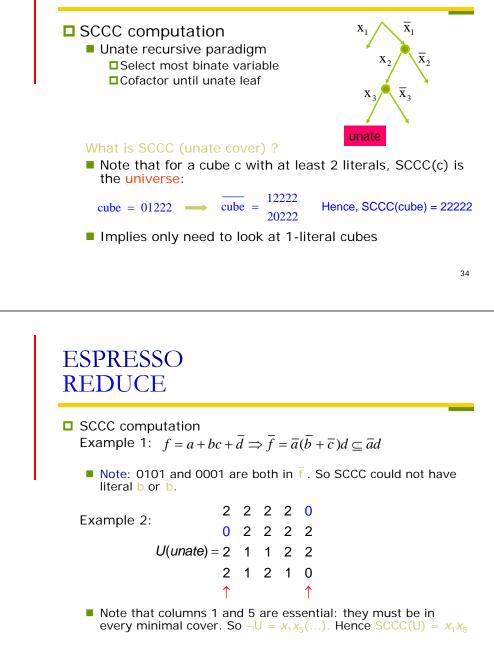
- Note that c_i ∩ F(i) is the set of points uniquely covered by c_i (and not by any other c_i or D).
- Thus, <u>c</u> is the smallest cube containing the minterms of c_i which are not in F(i).

ESPRESSO REDUCE

□ SCC: "smallest cube containing", i.e., supercube □ SCCC: "smallest cube containing complement"



ESPRESSO REDUCE



ESPRESSO REDUCE

□ SCCC computation

SCCC(U) = γ for a unate cover U

Claim

- □ If unate cover has row of all 2's except one 0, then complement is in x_i , i.e. $\gamma_i = 1$
- □ If unate cover has row of all 2's except one 1, then complement is in χ_i , i.e. $\gamma_i = 0$

Otherwise, in both subspaces, i.e. $\gamma_i = 2$

Finally

$$SCCC(c_1 + c_2 + \dots + c_k) = SCC(\overline{c_1}\overline{c_2}\dots\overline{c_k})$$
$$= SCC(\overline{c_1}) \cap \dots \cap SCC(\overline{c_k})$$

ESPRESSO REDUCE

SCCC computation Example 2 (cont'd):

$U = \overline{x}_1 + \overline{x}_5 + x_2(x_3 + x_4)$				0	1	1	1		
$\overline{U} = x_1 x_5 (\overline{x}_2 + \overline{x}_3 \overline{x}_4)$				0	0	1	1		
1	0	2	2	1	minterms of $\overline{U} = \frac{1}{2}$	0	1	0	1
$\overline{U}(unate) = 1$	2	0	0	1⊆12221	1	0	0	0	1
	↑	↑	↑		1	0	0	0	1
					1	1	0	0	1

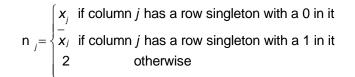
The marked columns contain both 0's and 1's. But every prime of \overline{U} contains literals x_1 , x_5

ESPRESSO REDUCE

□ SCCC computation

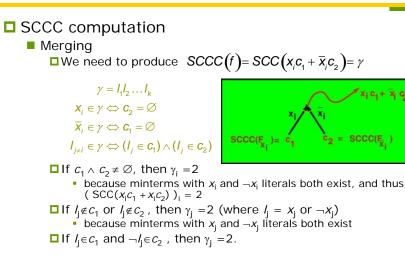
At unate leaves

 $n = SCCC(unate) = \emptyset$ if row of all 2's



□Hence unate leaf is easy !

ESPRESSO REDUCE



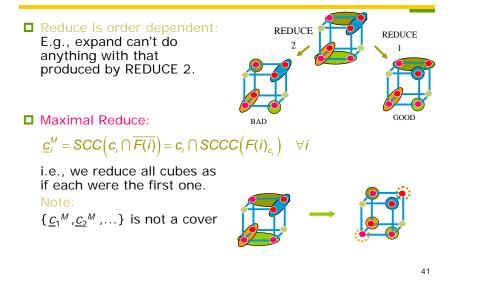
ESPRESSO

ESPRESSO(3)

 $(F,D,R) \leftarrow DECODE(\Im)$ $F \leftarrow EXPAND(F,R)$ $F \leftarrow IRREDUNDANT(F,D)$ $E \leftarrow ESSENTIAL_PRIMES(F,D)$ $F \leftarrow F-E; D \leftarrow D + E$ $do{$ $do{$ $F \leftarrow REDUCE(F,D)$ $F \leftarrow EXPAND(F,R)$ $F \leftarrow IRREDUNDANT(F,D)$ $} while fewer terms in F$

37

ESPRESSO LASTGASP



ESPRESSO LASTGASP

