Logic Synthesis and
Veritication I

Jie-Hong Roland Jiang
NI

/\\
Department of Electrical Engineering ‘\
National Taiwan University

Fall 2012

Don't Cares and Node
Minimization I

Reading:
Logic Synthesis in a Nutshell
Section 3 (83.4)

part of the following slides are by
courtesy of Andreas Kuehlmann

2

Node Minimization

Problem:

M Given a Boolean network, optimize it by
minimizing each node as much as possible

Note:

B Assume initial network structure is given

OTypically obtained after the global optimization, e.g.
division and resubstitution

B \We minimize the function associated with each
node

Permissible Functions of a Node

0 In a Boolean network, we may represent a node
using the primary inputs {X,,..., X, } the
intermediate variables {y,,..., ym} as long as the
network is acyclic

Definition:
A function g;, whose input variables are a subset
of {X,,... xn, Yiseees Yk, IS at a
node | if
¥ the variables of g; do not intersect with TFO;
OTFO; = {node i: i = j or 3 path from j to i}

® the replacement of the function associated
with j, say f;, by g; does not change the
functlonallty of thé network

Permissible Functions of a2 Node

0 The set of

functions at j provides the solution space of the
local optimization at node |

outputs

TFOj = {node i: i = j or 3 path from j to i}

Prime and Irredundant Boolean
Network

O

Consider a sum-of-products expression F; associated with a
node j

Definition: F; is prime (in a multi-level sense) if for all cubes
ce F,no of ¢ can be removed without changing the
functionality of the network

Definition: F; is irredundant if for any cube ¢ € F;, the
removal of ¢ from F; changes the functionality of the
network

Definition: A Boolean network is prime and irredundant if F;
is prime and irredundant for all j

Node Minimization

Goals:
O Given a Boolean network:
1.make the network prime and irredundant
2.for a given node of the network, find a SOP
expression among the implementable functions at the
node
Note:

B Goal 2 implies Goal 1

B There are many expressions that are prime and
irredundant, just like in two-level minimization. We seek
the

Taxonomy of Don't Cares

[0 External don't cares -

B The set of don’t care minterms (in terms of primary
input variables) given for each primary output is
denoted XDC,, k=1,...,p

O Internal don't cares - derived from the network structure
B Satisfiability don't cares -
B Observability don’t cares -

OO0 Complete Flexibility -
B CF is a superset of SDC, ODC, and localized XDC

Satisfiability Don't Cares

0 We may represent a node using the n primary
inputs plus the m intermediate variables

M Boolean space is B"*m

0 However, intermediate variables depend on the
primary inputs

0 Thus not all the minterms of B"*™ can occur:

M use the non-occuring minterms as don’t cares
to optimize the node function

® we get internal don’t cares even when no
external don’'t cares exist

Satisfiability Don't Cares

O Example

Y1 = Fp ==X
Y;i = Fj = Y1X%;

B Since y; = =X, Y; @ —X; never
occurs. So we may include these
points to represent F;

= Don't Cares
®SDC =(y; @ _|X1)+(yj® Y1X5)

In general, m .
SDC = (y;F; +Y;F))
j=1

Note: SDC < B*m

10

Observability Don't Cares

O Any minterm of X; X, + =X, =X3 + X, X3
determines z, independent of y;

O The ODC of y; w.r.t. z, is the set of minterms
of the primary inputs for which the value
of y; is not observable at z,

ODC;, ={xeB" | z, ()|, o=z (X)], .}

This means that the two Boolean networks,
¥ one with y; forced to O and
® one with y; forced to 1
compute the same value for z, when X € ODC;,
O The ODC of y; w.r.t. all primary outputs is ODC; = n, ODC;,

11

Observability Don't Cares

ODC;, ={xeB" | 2, (01, o=z (9], -}

oz
denote ODC, =—*

j

oz
where gk = Zk (X) |Yj=0 @Zk (X) |yj:1}
]

12

Observability Don’t Cares

C0The ODCs of node i and node j in a
Boolean network may not be compatible

B Modifying the function of node i using ODC,
may invalidate ODC;

M It brings up the issue of compatibility ODC
(CODOC)

B Computing CODC is too expensive to be
practical

OPractical approaches to node minimization often
consider one node at a time rather than multiple
nodes simultaneously

13

External Don’t Cares

0 The XDC global for an entire Boolean network is
often given

0 The XDC local for a specified window in a Boolean
network can be computed

] Question:
B How do we represent XDC?

® How do we translate XDC into local don’t care?
COXDC is originally in Pl variables
OTranslate XDC in terms of input variables of a node

14

External Don’t Cares

CIRepresenting XDC

XDC f=Yi0Y11 z (output)
/‘ b

15

Don’t Cares of a Node

C0The don’t cares of a node j can be
computed by

— — P
DC,= > (y,Fi+y,FR)+]](ODC, +XDC,)
k=1

igTFO,

16

Don’t Cares of a Node

O Theorem: The function & = (F-DC;, DC;, —(F;+DC))) is the
complete set of implementable functions at node |

O Corollary: F; is prime and irredundant (in the multi-level
sense) iff it'is prime and irredundant cover of §

0 A least-cost expression at node j can be obtained by
minimizing §;

O A prime and irredundant Boolean network can be obtained
by using only 2-level logic minimization for each node j with
the don't care DC;

17

Mapping Don't Cares to Local Space
COHow can be used for
optimizing a node j?
B ODC and XDC are in terms of the primary

input variables
CONeed to convert to the input variables of node j

S

18

Mapping Don't Cares to Local Space

] Definition: The local space B" of node j is the
Boolean space spanned by the fanin variables of
node j (plus maybe some other variables chosen
selectively)

B A don’t care set D(y"™) computed in local space spanned
by y™ is called a local don't care set. (The “+” stands for
additional variables.)

B Solution: Map DC(x) = ODC(x) + XDC(x) to local space
of the node to find local don't cares, i.e.,

D(y™)=IMG, (DC(x))

19

Mapping Don't Cares to Local Space

0 Computation in two steps:
1. Find DC(X) in terms of primary inputs

2. Find D, the local don’t care set, by image
computation and complementation

TN
D(y™)=IMG,_ (DC(x)) w %

20

Mapping Don’t Cares to Local Space
Global Function of a Node

{fj(yk,---,y.)
yj:

g;(X,--,X,) global function

i
m-+n n / \
B"" B '@
i

21

Mapping Don’t Cares to LLocal Space
Don't Cares in Primary Inputs

C0BDD based computation

® Build BDD’s representing global functions at
each node

Oin both the primary network and the don't care
network, g;(Xy,---, X))

Ouse BDD compose
M Replace all the intermediate variables in
(ODC+XDC) with their global BDDs
h(x,y)= DC(xy) = h(x) = DC(x)

h(x,y) =h(x,g(x)) = h(x)

22

Mapping Don't Cares to Local Space

t t | |
0 Example 2 (output)
XDC f1,=Y1Y11 ODC,=y, o fo=YiYe+ Y: Ve +Ys¥s
(_f 4
Y1 yl& Yo
/ \ ﬁ&) 2> & & Lo
Y10 Y11 ;/3\ ;/3\ ;/3\ Zg\
\ f \ Xy Xy, X3 X4 Xy Xz X5 X4
X, X3 Xy, X4
Yio =X X3 Y= ;2;4 ODCZ: y1
) 0, Xe Xe Xs X
XDC,™ Y. DC.=ODC.*XDC.
01 = X Xo X3 Xe DC.= X Xo Xs Xa ™ Xu X2 X X N
Mapping Don’t Cares to LLocal Space
Image Computation

O Local don't cares are the set of minterms in the local space of y;
that cannot be reached under any input combination in the
of y; (in terms of the input variables).

O Local don't care set: D = IMAGE g Lcare set]

(9,9,

i.e. those patterns of (y,,...,y,) that never appear as images of

input cares.
image of care set under
mapping ¥.,....y,
= 1 o
\W 4 A
Yi g, Y : D
g, r Image
>/ \ <
| | | | DC=XDC+ODC,
S S Xn

care set o4

Mapping Don't Cares to Local Space

z (output)

O Example (cont'd))

XDC f,=Yi0Y11
/

X — X1 Xy X3 %4 Xy X3 Xy %Xy
X; X3 X, Xy
Note that D, is given in this space Yg, Vg, Y7, Ys-
Thus in the space (- - 10) never occurs.
DG = Xt Kot X XK. Ca_n check that DC,D, =9 - DC_Z_(xlxg)(x2 X, + %X,%,)
DG~ X X KK XX, UsmgLDz— Y.Y, , f, can be simplified to

nyjs f2:y7y8+y5y6 25

ODC.=Y,
ODC.-=Y,

Image Computation

0 Two methods:

1. Transition relation method
Of:B">B"=F:B"xB"—>B
(F is the characteristic function of f1)

FOGY) ={(x,y)[y= ()}
= | (y; = fi(x))

A

i<r

=] 1 (i fi() +§i?i (X))

i<r

2. Recursive image computation (omitted)

26

Image Computation
Transition Relation Method

O Image of set A under f: f(A) = 3, (F(X,y) A A(X))

where 3x - EIx1 . 'Elxn and EIxi g= gxi T g;(i

O The existential quantification 3, is also called “smoothing”
Note: The result is a BDD representing the image,

i.e. f(A) is a BDD with the property that
BDD(y) = 1 < 3Ix such that f(x) =y and x € A.

27

Node Simplification

XDC

outputs

t 1t

® m intermediate
o nodes

PP ™=

Express ODC in terms of variables in B"m

28

Node Simplification

B'

Minimize fj with don’t care D

J
local

: : : space B’
Question: Where does SDC come into playing? P

29

Complete Flexibility

CIComplete flexibility (CF) of a node in a
combinational network
B SDC + ODC + localized XDC

B Used to minimize one node at a time

CONot considering compatible flexibilities among
multiple nodes

ODifferent from CODC, where don’t cares at different
nodes are compatible and can minimize multiple
nodes simultaneously

30

Complete Flexibility

O Definition: A at a node is a relation (between the
node’s inputs and output) such that any well-defined sub-
relation used at the node leads to a network that conforms
to the external specification

O Definition: The Is the maximum
flexibility possible at a node

Combinational
Logic Network

KRR

by courtesy of Robert Brayton 31

Complete Flexibility

0 Computing complete flexibility

R(X,yI)ZVZ[l(X,yI,Z): S(X’Z)]

Note: Specification relation S(X,Z) may contain non-
determinism and subsumes XDC. Influence relation 1(X,y;,Z)

subsumes ODC.
by courtesy of Robert Brayton 32

Complete Flexibility

0 Computing complete flexibility

p—

) Yi
X — — 7 Note: Environment relation E(X,Y;)
subsumes SDC.

CE(Y;,y;) = VX.[E(X,Y,) = R(X,y;)]
=VX.[E(X,Y,)= VZ[I(X,y,,Z) = S(X,Z)]]
=X, ZAEMX,Y)A (X, Y., Z) A=S(X,Z)]

by courtesy of Robert Brayton 33

Complete Flexibility

[0 Computing complete flexibility @

) i [

Y“/

CF(Y.,y.)=VX.[E(X,Y.) = VZ.[I(X, V., Z) = S(X,Z)]]
=X, ZIE(X,Y)-1(X,y.,Z)-S(X,Z)]

Note: The same computation works for multiple y;'s
by courtesy of Robert Brayton 34

Window and Don’t Care Compuation

O Definition: A for a
node in the network is the Boolean network
context in which the don't- Window POs

cares are Computed
0 A window includes
B n levels of the TFI
[| levels of the TFO

B all re-convergent paths
captured in this scope

0 Window with its Pls and POs
can be considered as a
separate network

OO0 Optimizing a window is
more computationally
affordable than optimizing
an entire network Window Pls

by courtesy of Alan Mishchenko 35

SAT-based Don't Care Computation

“Miter” constructed for the window POs
|

I |
Tl
X
L1 T T]
[ISI [-
window same window

with inverter
by courtesy of Alan Mishchenko 36

SAT-based Don't Care Computation

[0 Compute the care set
B Simulation

. . . 1
O Simulate the miter using random
patterns
[Collect x minterms, for which the
output of miteris 1 #‘r_’
| 11

O This is a subset of a care set L —
B Satisfiability X
[Derive set of network clauses Eﬁx X
O Add the negation of the current care T T T T T T 17
set s s

O Assert the output of miter to be 1

O Enumerate through the SAT
assignments

O Add these assignments to the care
set

by courtesy of Alan Mishchenko 37

Resubstitution for Circuit Minimization

O Resubstitution considers a node in a Boolean network and
expresses it using a different set of fanins

by courtesy of Alan Mishchenko 38

Resubstitution with Don’t Cares

CdConsider all or some nodes in Boolean

network
M Create window

M Select possible fanin nodes (divisors)

M For each candidate subset of divisors
ORule out some subsets using simulation
COCheck resubstitution feasibility using SAT
C0Compute resubstitution function using interpolation

= A low-cost by-product of completed SAT proofs

B Update the network if there is an improvement

by courtesy of Alan Mishchenko

39

Resubstitution with Don’t Cares

O Given:
B node function F(x) to be replaced
B care set C(x) for the node

B candidate set of divisors {g;(x)} for
re-expressing F(x)

O Find:

B A resubstitution function h(y) such
that F(x) = h(g(x)) on the care set
B Necessary and sufficient condition:

For any minterms a and b, F(a) =
F(b) implies g;(a) # g;(b) for some g;

C(x)/K(x) 9:1A\92 A 93
= F(4
C(x)/k(x
9:1A\9> A 93

by courtesy of Alan Mishchenko

40

Resubstitution

0 Example
X FOX) | 9.0 | 9,(x)

Given: 000 0 0] 0] 0 0
F(X) = (X:@ X5)(X5 v X3)

001 0 0] 0] 0] 0
Two ce}ndldate setsi 010 1 1 0 1 0
{9:= X1'X5, 9, = X3 X,'X3},

011 1 1 0] 1 1

(O] o | o [/M

Set cannot be \%/ 0 1 U U
used for resubstitution
while set {g,, g,} can. 110 0 0 0 1 0

111 0 0 0] 1 1

by courtesy of Alan Mishchenko 41

SAT-based Resubstitution

Miter for resubstitution check

B 1

N
]
]
]
1
]
]
]
]

Fffffffifffff 1t
X1 X2

Resubstitution function exists if and only if SAT problem is unsatisfiable
Note:

by courtesy of Alan Mishchenko 42

SAT-based Resubstitution

0 Computing dependency function h by
interpolation

B Consider two sets of clauses, A(x, v) and B(y, z), such
that A(x, y) A B(y,z) =0

My are the only variables common to A and B

B An interpolant of the pair (A(x, v), B(y, z)) is a function
h(y) depending only on the common variables vy such
that A(x,vy) = h(y) = —B(y, 2)

Boolean space (x,y,2)
h(y)

B(y, 2)

by courtesy of Alan Mishchenko 43

SAT-based Resubstitution

OO0 Problem: Find function h(y), such that C(x) = [h(g(x)) = F(x)], i.e.
F(x) is expressed in terms of {0}
OO0 Solution:
B Prove the corresponding SAT problem “unsatisfiable”
Derive unsatisfiability resolution proof [Goldberg/Novikov, DATE'03]
Divide clauses into A clauses and B clauses
Derive interpolant from the unsatisfiability proof [McMillan, CAV’'03]
Use interpolant as the dependency function, h(g)
Replace F(x) by h(g) if cost function improved

R I I LA B
X1 X2

by courtesy of Alan Mishchenko 44

