
1

Logic Synthesis and
Verification

Jie-Hong Roland Jiang
江介宏

Department of Electrical Engineering
National Taiwan University

Fall 2012

2

Don’t Cares and Node
Minimization

Reading:
Logic Synthesis in a Nutshell

Section 3 (§3.4)

part of the following slides are by
courtesy of Andreas Kuehlmann

3

Node Minimization
Problem:
Given a Boolean network, optimize it by

minimizing each node as much as possible

Note:
Assume initial network structure is given

Typically obtained after the global optimization, e.g.
division and resubstitution

We minimize the function associated with each
node

4

Permissible Functions of a Node
 In a Boolean network, we may represent a node

using the primary inputs {x1,…, xn} plus the
intermediate variables {y1,…, ym}, as long as the
network is acyclic

Definition:
A function gj, whose input variables are a subset
of {x1,…, xn, y1,…, ym}, is implementable at a
node j if
 the variables of gj do not intersect with TFOj

TFOj = {node i: i = j or  path from j to i}
 the replacement of the function associated

with j, say fj, by gj does not change the
functionality of the network

5

Permissible Functions of a Node
 The set of implementable (or permissible)

functions at j provides the solution space of the
local optimization at node j

TFOj = {node i: i = j or  path from j to i} 6

Prime and Irredundant Boolean
Network
 Consider a sum-of-products expression Fj associated with a

node j

 Definition: Fj is prime (in a multi-level sense) if for all cubes
c  Fj, no literal of c can be removed without changing the
functionality of the network

 Definition: Fj is irredundant if for any cube c  Fj, the
removal of c from Fj changes the functionality of the
network

 Definition: A Boolean network is prime and irredundant if Fj
is prime and irredundant for all j

7

Node Minimization
Goals:
 Given a Boolean network:

1.make the network prime and irredundant
2. for a given node of the network, find a least-cost SOP

expression among the implementable functions at the
node

Note:
 Goal 2 implies Goal 1
 There are many expressions that are prime and

irredundant, just like in two-level minimization. We seek
the best.

8

Taxonomy of Don’t Cares
 External don't cares - XDC

 The set of don’t care minterms (in terms of primary
input variables) given for each primary output is
denoted XDCk, k=1,…,p

 Internal don't cares - derived from the network structure
 Satisfiability don’t cares - SDC
 Observability don’t cares - ODC

 Complete Flexibility - CF
 CF is a superset of SDC, ODC, and localized XDC

9

Satisfiability Don’t Cares
We may represent a node using the n primary

inputs plus the m intermediate variables
Boolean space is Bn+m

 However, intermediate variables depend on the
primary inputs

 Thus not all the minterms of Bn+m can occur:
 use the non-occuring minterms as don’t cares

to optimize the node function
we get internal don’t cares even when no

external don’t cares exist

10

Satisfiability Don’t Cares
 Example

y1 = F1 = x1
yj = Fj = y1x2

 Since y1 = x1, y1  x1 never
occurs. So we may include these
points to represent Fj
 Don't Cares

 SDC = (y1  x1)+(yj y1x2)

In general,

Note: SDC  Bn+m

)(
1

jj

m

j
jj FyFySDC 



11

Observability Don’t Cares
yj = x1 x2 + x1 x3
zk = x1 x2 + yj x2 + yj x3

 Any minterm of x1 x2 + x2 x3 + x2 x3
determines zk independent of yj

 The ODC of yj w.r.t. zk is the set of minterms
of the primary inputs for which the value
of yj is not observable at zk

This means that the two Boolean networks,
 one with yj forced to 0 and
 one with yj forced to 1

compute the same value for zk when x  ODCjk
 The ODC of yj w.r.t. all primary outputs is ODCj = k ODCjk

0 1{ | () | () | }
j j

n
jk k y k yODC x B z x z x   

12

Observability Don’t Cares

0 1{ | () | () | }
j j

n
jk k y k yODC x B z x z x   

0 1() | () | }
j j

k
k y k y

j

z z x z x
y  


 


k
jk

j

zODC
y





denote

where

13

Observability Don’t Cares
The ODCs of node i and node j in a

Boolean network may not be compatible
Modifying the function of node i using ODCi

may invalidate ODCj

 It brings up the issue of compatibility ODC
(CODC)

Computing CODC is too expensive to be
practical
Practical approaches to node minimization often

consider one node at a time rather than multiple
nodes simultaneously

14

External Don’t Cares
 The XDC global for an entire Boolean network is

often given

 The XDC local for a specified window in a Boolean
network can be computed

Question:
How do we represent XDC?
How do we translate XDC into local don’t care?

XDC is originally in PI variables
Translate XDC in terms of input variables of a node

15

External Don’t Cares
Representing XDC

XDC in a
separate
network

multi-level Boolean network for z

y12

y11y10

XDC

x1 x4x2

f12=y10y11

y9

y3

y1

y4 y8y7

y2

or

x4

y6y5

z (output)

2 410 1 3 11y x x y x x 

x3

x3x2x1 x4x2x3x1

ODC2=y1 2 7 8 7 8 5 6f y y y y y y  

&

& & & 

16

Don’t Cares of a Node
The don’t cares of a node j can be

computed by

1

() ()
j

p

ij i i jk ki
i TFO k

DC y F y F ODC XDC
 

    

FFjj

inputs

outputs

ODCODC

SS DD CC
Boolean
network

17

Don’t Cares of a Node
 Theorem: The function Fj = (Fj-DCj, DCj, (Fj+DCj)) is the

complete set of implementable functions at node j

 Corollary: Fj is prime and irredundant (in the multi-level
sense) iff it is prime and irredundant cover of Fj

 A least-cost expression at node j can be obtained by
minimizing Fj

 A prime and irredundant Boolean network can be obtained
by using only 2-level logic minimization for each node j with
the don't care DCj

18

Mapping Don’t Cares to Local Space
How can ODC + XDC be used for

optimizing a node j?
ODC and XDC are in terms of the primary

input variables
Need to convert to the input variables of node j

yj

x1 x2 xn

yryl

19

Mapping Don’t Cares to Local Space
 Definition: The local space Br of node j is the

Boolean space spanned by the fanin variables of
node j (plus maybe some other variables chosen
selectively)
 A don’t care set D(yr+) computed in local space spanned

by yr+ is called a local don’t care set. (The “+” stands for
additional variables.)

 Solution: Map DC(x) = ODC(x) + XDC(x) to local space
of the node to find local don’t cares, i.e.,

() (())
FI j

r
gD y IMG DC x



 

20

Mapping Don’t Cares to Local Space
 Computation in two steps:

1. Find DC(x) in terms of primary inputs
2. Find D, the local don’t care set, by image

computation and complementation

yj

x1 x2 xn

yryl() (())
FI j

r
gD y IMG DC x



 

21

Mapping Don’t Cares to Local Space
Global Function of a Node

BB nnm 

1

(, ,)

(, ,) global function
j k l

j
j n

f y y
y

g x x
 






yj

x1 x2 xn

yryl

22

Mapping Don’t Cares to Local Space
Don’t Cares in Primary Inputs

BDD based computation
Build BDD’s representing global functions at

each node
in both the primary network and the don’t care

network, gj(x1,...,xn)
use BDD_compose

Replace all the intermediate variables in
(ODC+XDC) with their global BDDs

DC(x)xhDC(x,y)yxh )(),(~

)())(,(~),(~ xhxgxhyxh 

23

Mapping Don’t Cares to Local Space
 Example

XDCODCDC
xxxxxxxxDCxxxxg

yXDC2
xxxxg

yODC

z









22

432143212432112

12

43211

12

y12

y11y10

XDC

x1 x4x2

f12=y10y11

y9

y3

y1

y4 y8y7

y2

or

x4

y6y5

z (output)

2 410 1 3 11y x x y x x 

x3

x3x2x1 x4x2x3x1

ODC2=y1 2 7 8 7 8 5 6f y y y y y y  

&

& & & 

24

Mapping Don’t Cares to Local Space
Image Computation
 Local don’t cares are the set of minterms in the local space of yi

that cannot be reached under any input combination in the care
set of yi (in terms of the input variables).

 Local don’t care set:

i.e. those patterns of (y1,...,yr) that never appear as images of
input cares.

1 2(, , ,)IMAGE [care set]
ri g g gD  

yj

x1 x2 xn

local
space

grgi image
Bn

Br

Di

image of care set under
mapping y1,...,yr

DCi=XDCi+ODCi
care set

yi yr

25

Mapping Don’t Cares to Local Space
 Example (cont’d)

y12

y11y10

XDC

x1 x4x2

f12=y10y11

y9

y3

y1

y4 y8y7

y2

or

x4

y6y5

z (output)

x3

x3x2x1 x4x2x3x1

ODC2=y1 2 7 8 7 8 5 6f y y y y y y  

&

& & & 

yyD
xxxxxxDC
xxxxxxxxDC

yODC
yODC

z

872

4242312

432143212

12

12











2 2 2 1 3 2 4 2 4()()DC D DC x x x x x x  
yyD 872 

yyyyf 65872


Note that D2 is given in this space y5, y6, y7, y8.
Thus in the space (- - 10) never occurs.
Can check that
Using , f2 can be simplified to

26

Image Computation

 Two methods:
1. Transition relation method

 f : Bn  Br  F : Bn x Br  B
(F is the characteristic function of f!)

2. Recursive image computation (omitted)

(,) {(,) | ()}
 (())

 (() ())

i i
i r

i i i i
i r

F x y x y y f x
y f x

y f x y f x




 

 

 





27

Image Computation
Transition Relation Method
 Image of set A under f: f(A) = x(F(x,y)  A(x))

 The existential quantification x is also called “smoothing”
Note: The result is a BDD representing the image,

i.e. f(A) is a BDD with the property that
BDD(y) = 1  x such that f(x) = y and x  A.

A f(A)f

x y

1
where and

n i i ix x x x x xg g g     

28

Node Simplification

inputs  Bn

fj

XDC outputs

m intermediate
nodes

Express ODC in terms of variables in Bn+m

Don’t
Care
network

29

Node Simplification

ODC+XDC DC

DCDC

cares

D

cares

Minimize fj with don’t care D

Bn+m
Bn

Br

compose

image
computation

fj
local
space Br

Question: Where does SDC come into playing?

30

Complete Flexibility

Complete flexibility (CF) of a node in a
combinational network
SDC + ODC + localized XDC
Used to minimize one node at a time

Not considering compatible flexibilities among
multiple nodes

Different from CODC, where don’t cares at different
nodes are compatible and can minimize multiple
nodes simultaneously

31

Complete Flexibility
 Definition: A flexibility at a node is a relation (between the

node’s inputs and output) such that any well-defined sub-
relation used at the node leads to a network that conforms
to the external specification

 Definition: The complete flexibility (CF) is the maximum
flexibility possible at a node

Combinational
Logic Network

by courtesy of Robert Brayton 32

Complete Flexibility
 Computing complete flexibility

(, ,)iI X y Z

(,) .[(, ,) (,)]i iR X y Z I X y Z S X Z  

X Z
yi

Note: Specification relation S(X,Z) may contain non-
determinism and subsumes XDC. Influence relation I(X,yi,Z)
subsumes ODC.

cut the network and treat yi
as a pseudo primary input

by courtesy of Robert Brayton

33

Complete Flexibility
 Computing complete flexibility

X Z
yi

Yi

YYii
yyii

(,) .[(,) (,)]
 .[(,) .[(, ,) (,)]]
 , . [(,) (, ,) (,)]

i i i i

i i

i i

CF Y y X E X Y R X y
X E X Y Z I X y Z S X Z
X Z E X Y I X y Z S X Z

  

  
   

Note: Environment relation E(X,Yi)
subsumes SDC.

by courtesy of Robert Brayton 34

Complete Flexibility
 Computing complete flexibility

X Z
yi

Yi

YYii
yyii

(,) .[(,) .[(, ,) (,)]]

 , .[(,) (, ,) (,)]

i i i i

i i

CF Y y X E X Y Z I X y Z S X Z

X Z E X Y I X y Z S X Z

   

  

Yi yi

Note: The same computation works for multiple yi’s
by courtesy of Robert Brayton

35

Window and Don’t Care Compuation
 Definition: A window for a

node in the network is the
context in which the don’t-
cares are computed

 A window includes
 n levels of the TFI
 m levels of the TFO
 all re-convergent paths

captured in this scope
 Window with its PIs and POs

can be considered as a
separate network

 Optimizing a window is
more computationally
affordable than optimizing
an entire network

Window POs

Window PIs

n = 3

m = 3

Boolean network

by courtesy of Alan Mishchenko 36

SAT-based Don’t Care Computation

…

“Miter” constructed for the window POs

ff

ss

xx

windowwindow

ff

ss

xx

same window same window
with inverterwith inverter

by courtesy of Alan Mishchenko

37

SAT-based Don’t Care Computation
 Compute the care set

 Simulation
 Simulate the miter using random

patterns
 Collect x minterms, for which the

output of miter is 1
 This is a subset of a care set

 Satisfiability
 Derive set of network clauses
 Add the negation of the current care

set
 Assert the output of miter to be 1
 Enumerate through the SAT

assignments
 Add these assignments to the care

set

s s

x x
n n

11

by courtesy of Alan Mishchenko 38

Resubstitution for Circuit Minimization
 Resubstitution considers a node in a Boolean network and

expresses it using a different set of fanins

X X

Computation can be enhanced by use of donComputation can be enhanced by use of don’’t carest cares
by courtesy of Alan Mishchenko

39

Resubstitution with Don’t Cares
Consider all or some nodes in Boolean

network
Create window
Select possible fanin nodes (divisors)
 For each candidate subset of divisors

Rule out some subsets using simulation
Check resubstitution feasibility using SAT
Compute resubstitution function using interpolation

 A low-cost by-product of completed SAT proofs

Update the network if there is an improvement

by courtesy of Alan Mishchenko 40

Resubstitution with Don’t Cares
 Given:

 node function F(x) to be replaced
 care set C(x) for the node
 candidate set of divisors {gi(x)} for

re-expressing F(x)

 Find:
 A resubstitution function h(y) such

that F(x) = h(g(x)) on the care set
 Necessary and sufficient condition:

For any minterms a and b, F(a) 
F(b) implies gi(a)  gi(b) for some gi

C(x) F(x) g1 g2 g3

C(x) F(x)

g1 g2 g3

h(g)

= F(x)

by courtesy of Alan Mishchenko

41

Resubstitution
 Example

Given:
F(x) = (x1 x2)(x2  x3)

Two candidate sets:
{g1= x1’x2, g2 = x1 x2’x3},
{g3= x1  x2, g4 = x2 x3}

Set {g3, g4} cannot be
used for resubstitution
while set {g1, g2} can.

x F(x) g1(x) g2(x) g3(x) g4(x)

000 0 0 0 0 0

001 0 0 0 0 0

010 1 1 0 1 0

011 1 1 0 1 1

100 0 0 0 1 0

101 1 0 1 1 0

110 0 0 0 1 0

111 0 0 0 1 1

by courtesy of Alan Mishchenko 42

SAT-based Resubstitution

x1

F g1 g2 g3

1 1

1

0 1

F g3 g2 g1 C

x2

B A

C

Miter for resubstitution check

Resubstitution function exists if and only if SAT problem is unsatisfiable
Note: Care set is used to enhance resubstitution check

by courtesy of Alan Mishchenko

43

SAT-based Resubstitution
 Computing dependency function h by

interpolation
 Consider two sets of clauses, A(x, y) and B(y, z), such

that A(x, y)  B(y, z) = 0
 y are the only variables common to A and B
 An interpolant of the pair (A(x, y), B(y, z)) is a function

h(y) depending only on the common variables y such
that A(x, y)  h(y)  B(y, z)

AA((xx,, yy)) BB((yy,, zz))

hh((yy))

Boolean space Boolean space ((x,y,zx,y,z))

by courtesy of Alan Mishchenko 44

SAT-based Resubstitution
 Problem: Find function h(y), such that C(x)  [h(g(x))  F(x)], i.e.

F(x) is expressed in terms of {gi}
 Solution:

 Prove the corresponding SAT problem “unsatisfiable”
 Derive unsatisfiability resolution proof [Goldberg/Novikov, DATE’03]
 Divide clauses into A clauses and B clauses
 Derive interpolant from the unsatisfiability proof [McMillan, CAV’03]
 Use interpolant as the dependency function, h(g)
 Replace F(x) by h(g) if cost function improved

x1

f g1 g2 g3

1 1

1

0 1

f g3 g2 g1 C

x2

B A

C

by courtesy of Alan Mishchenko

