Logic Synthesis and Verification

Jie-Hong Roland Jiang 江介宏

Department of Electrical Engineering National Taiwan University

Fall 2012

Node Minimization

Problem:

Given a Boolean network, optimize it by minimizing each node as much as possible

Note:

Assume initial network structure is given

Typically obtained after the global optimization, e.g. division and resubstitution

We minimize the function associated with each node

Don't Cares and Node Minimization

Reading: Logic Synthesis in a Nutshell Section 3 (§3.4)

part of the following slides are by courtesy of Andreas Kuehlmann

Permissible Functions of a Node

In a Boolean network, we may represent a node using the primary inputs {x₁,..., x_n} plus the intermediate variables {y₁,..., y_m}, as long as the network is acyclic

Definition:

A function $g_j,$ whose input variables are a subset of $\{x_1,...,\ x_n,\ y_1,...,\ y_m\},$ is implementable at a node j if

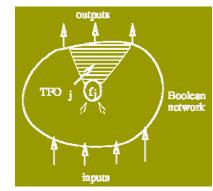
- the variables of g_j do not intersect with TFO_j
 □ TFO_i = { node i: i = j or ∃ path from j to i}
- the replacement of the function associated with j, say f_j, by g_j does not change the functionality of the network

3

1

Permissible Functions of a Node

The set of implementable (or permissible) functions at j provides the solution space of the local optimization at node j



TFOj = {node i: i = j or \exists path from j to i}

Prime and Irredundant Boolean Network

- $\hfill\square$ Consider a sum-of-products expression F_j associated with a node j
- Definition: F_j is prime (in a multi-level sense) if for all cubes $c \in F_j$, no literal of c can be removed without changing the functionality of the network
- □ Definition: F_j is irredundant if for any cube $c \in F_j$, the removal of c from F_j changes the functionality of the network
- Definition: A Boolean network is prime and irredundant if F_j is prime and irredundant for all j

Node Minimization

Goals:

Given a Boolean network:

- 1. make the network prime and irredundant
- 2. for a given node of the network, find a least-cost SOP expression among the implementable functions at the node

Note:

- Goal 2 implies Goal 1
- There are many expressions that are prime and irredundant, just like in two-level minimization. We seek the best.

Taxonomy of Don't Cares

External don't cares - XDC

- The set of don't care minterms (in terms of primary input variables) given for each primary output is denoted XDC_k, k=1,...,p
- Internal don't cares derived from the network structure
 - Satisfiability don't cares SDC
 - Observability don't cares ODC
- Complete Flexibility CF
 - CF is a superset of SDC, ODC, and localized XDC

5

Satisfiability Don't Cares

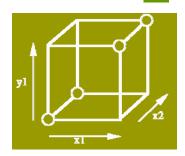
- □ We may represent a node using the *n* primary inputs plus the *m* intermediate variables
 - Boolean space is B^{n+m}
- However, intermediate variables depend on the primary inputs
- □ Thus not all the minterms of B^{n+m} can occur:
 - use the non-occuring minterms as don't cares to optimize the node function
 - we get internal don't cares even when no external don't cares exist

Satisfiability Don't Cares

Example

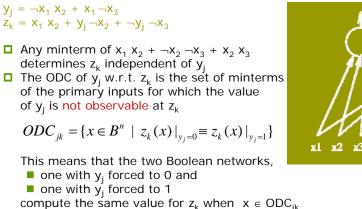
- $\begin{array}{l} y_1 \,=\, F_1 \,=\, \neg x_1 \\ y_j \,=\, F_j \,=\, y_1 x_2 \end{array}$
- Since y₁ = ¬x₁, y₁ ⊕ ¬x₁ never occurs. So we may include these points to represent F_j
 ⇒ Don't Cares
- $\blacksquare SDC = (y_1 \oplus \neg x_1) + (y_j \oplus y_1 x_2)$





10

Observability Don't Cares



□ The ODC of y_i w.r.t. all primary outputs is $ODC_i = \bigcap_k ODC_{ik}$

Observability Don't Cares

$$ODC_{jk} = \{x \in B^n \mid z_k(x)|_{y_j=0} = z_k(x)|_{y_j=1}\}$$

denote
$$ODC_{jk} = \frac{\partial Z_k}{\partial y_j}$$

where
$$\frac{\partial z_k}{\partial y_j} = z_k(x)|_{y_j=0} \oplus z_k(x)|_{y_j=1}$$

Observability Don't Cares

- The ODCs of node i and node j in a Boolean network may not be compatible
 - Modifying the function of node i using ODC_i may invalidate ODC_i
 - It brings up the issue of compatibility ODC (CODC)
 - Computing CODC is too expensive to be practical

Practical approaches to node minimization often consider one node at a time rather than multiple nodes simultaneously

External Don't Cares

- The XDC global for an entire Boolean network is often given
- The XDC local for a specified window in a Boolean network can be computed

Question:

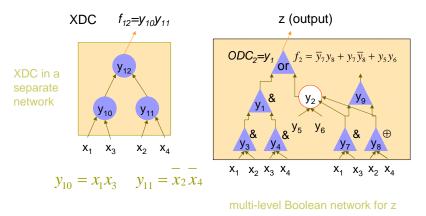
- How do we represent XDC?
- How do we translate XDC into local don't care?
 XDC is originally in PI variables
 Translate XDC in terms of input variables of a node

14

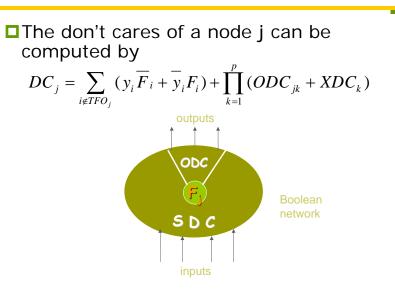
16

External Don't Cares

Representing XDC



Don't Cares of a Node



15

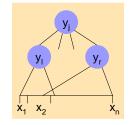
Don't Cares of a Node

- **D** Theorem: The function $\mathscr{F}_j = (F_j DC_j, DC_j, \neg(F_j + DC_j))$ is the complete set of implementable functions at node j
- □ Corollary: F_j is prime and irredundant (in the multi-level sense) iff it is prime and irredundant cover of 𝔅_i
- A least-cost expression at node j can be obtained by minimizing *B*_j
- A prime and irredundant Boolean network can be obtained by using only 2-level logic minimization for each node j with the don't care DC_i

Mapping Don't Cares to Local Space

- How can ODC + XDC be used for optimizing a node j?
 - ODC and XDC are in terms of the primary input variables

□Need to convert to the input variables of node j



Mapping Don't Cares to Local Space

- Definition: The local space B^r of node j is the Boolean space spanned by the fanin variables of node j (plus maybe some other variables chosen selectively)
 - A don't care set D(y^{r+}) computed in local space spanned by y^{r+} is called a local don't care set. (The "+" stands for additional variables.)
 - Solution: Map DC(x) = ODC(x) + XDC(x) to local space of the node to find local don't cares, i.e.,

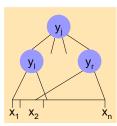
$D(y^{r+}) = \overline{IMG_{g_{FI_{j}^{+}}}(\overline{DC}(x))}$

Mapping Don't Cares to Local Space

Computation in two steps:

- 1. Find DC(x) in terms of primary inputs
- 2. Find D, the local don't care set, by image computation and complementation

$$D(y^{r+}) = IMG_{g_{FI_i^+}}(\overline{DC}(x))$$

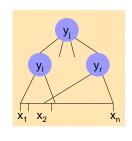


17

Mapping Don't Cares to Local Space Global Function of a Node

 $y_{j} = \begin{cases} f_{j}(y_{k}, \dots, y_{l}) \\ g_{j}(x_{1}, \dots, x_{n}) & \text{global function} \end{cases}$

 $B^{m+n} \rightarrow R'$



21

23

Mapping Don't Cares to Local Space Don't Cares in Primary Inputs

BDD based computation

Build BDD's representing global functions at each node

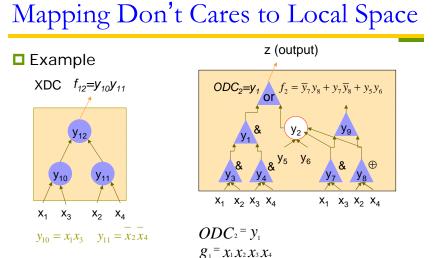
□ in both the primary network and the don't care network, $g_i(x_1,...,x_n)$

□use BDD compose

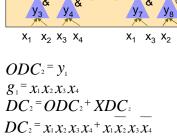
Replace all the intermediate variables in (ODC+XDC) with their global BDDs

$$\widetilde{h}(x, y) = DC(x, y) \rightarrow h(x) = DC(x)$$
$$\widetilde{h}(x, y) = \widetilde{h}(x, g(x)) = h(x)$$

22



 $XDC_{2}^{=} y_{12}$ $g_{12} = \chi_1 \chi_2 \chi_3 \chi_4$

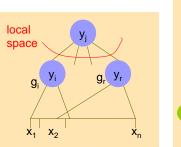


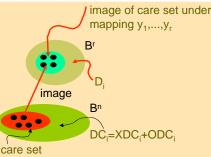
Mapping Don't Cares to Local Space Image Computation

□ Local don't cares are the set of minterms in the local space of y_i that cannot be reached under any input combination in the care set of y_i (in terms of the input variables).

□ Local don't care set: $D_i = IMAGE_{(g_1,g_2,\dots,g_r)}$ [care set]

i.e. those patterns of (y_1, \ldots, y_r) that never appear as images of input cares.





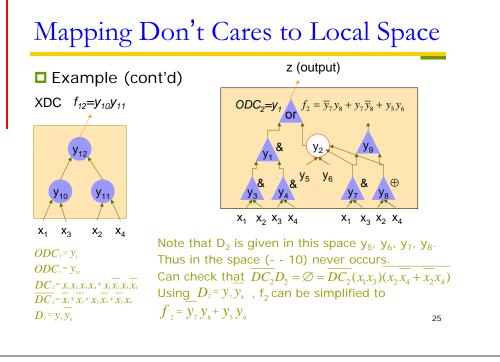


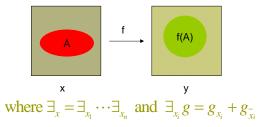
Image Computation

Two methods:

- 1. Transition relation method $f: B^{n} \to B^{r} \Rightarrow F: B^{n} \times B^{r} \to B$ (F is the characteristic function of f!) $F(x, y) = \{(x, y) \mid y = f(x)\}$ $= \prod_{i \le r} (y_{i} \equiv f_{i}(x))$ $= \prod_{i \le r} (y_{i}f_{i}(x) + \overline{y_{i}}\overline{f_{i}}(x))$
- 2. Recursive image computation (omitted)

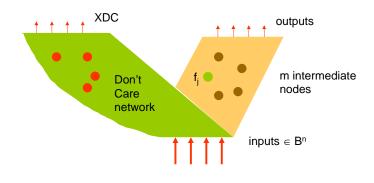
Image Computation Transition Relation Method

□ Image of set A under f: $f(A) = \exists_x(F(x,y) \land A(x))$

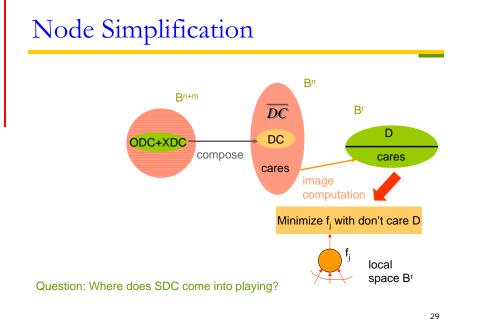


□ The existential quantification ∃_x is also called "smoothing" Note: The result is a BDD representing the image, i.e. f(A) is a BDD with the property that BDD(y) = 1 ⇔ ∃x such that f(x) = y and x ∈ A.

Node Simplification



Express ODC in terms of variables in B^{n+m}



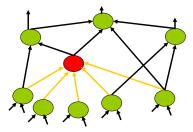
Complete Flexibility

Complete flexibility (CF) of a node in a combinational network

- SDC + ODC + localized XDC
- Used to minimize one node at a time
 Not considering compatible flexibilities among multiple nodes
 - Different from CODC, where don't cares at different nodes are compatible and can minimize multiple nodes simultaneously

Complete Flexibility

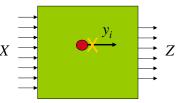
- Definition: A flexibility at a node is a relation (between the node's inputs and output) such that any well-defined subrelation used at the node leads to a network that conforms to the external specification
- Definition: The complete flexibility (CF) is the *maximum* flexibility possible at a node



Combinational Logic Network

Complete Flexibility

Computing complete flexibility



 $I(X, y_i, Z)$

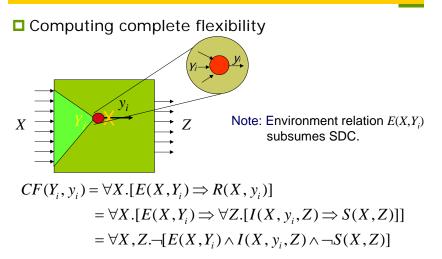
cut the network and treat y_i as a pseudo primary input

30

$$R(X, y_i) = \forall Z. [I(X, y_i, Z) \Longrightarrow S(X, Z)]$$

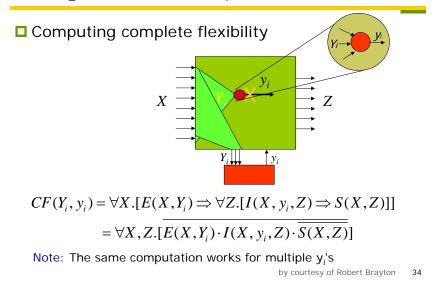
Note: Specification relation S(X,Z) may contain nondeterminism and subsumes XDC. Influence relation $I(X,y_i,Z)$ subsumes ODC.

Complete Flexibility



by courtesy of Robert Brayton 33

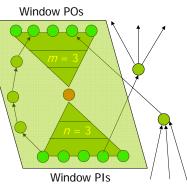
Complete Flexibility



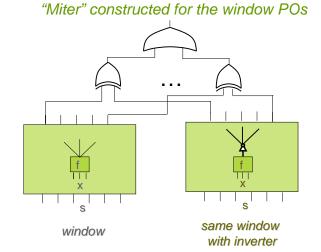
Window and Don't Care Compution

- Definition: A window for a node in the network is the context in which the don'tcares are computed
- A window includes
 - n levels of the TFI
 - Ievels of the TFO
 - all re-convergent paths captured in this scope
- Window with its PIs and POs can be considered as a separate network
- Optimizing a window is more computationally affordable than optimizing an entire network

Boolean network



SAT-based Don't Care Computation



by courtesy of Alan Mishchenko 36

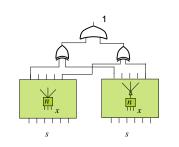
SAT-based Don't Care Computation

Compute the care set

- Simulation
 - Simulate the miter using random patterns
 - Collect x minterms, for which the output of miter is 1
- This is a subset of a care set

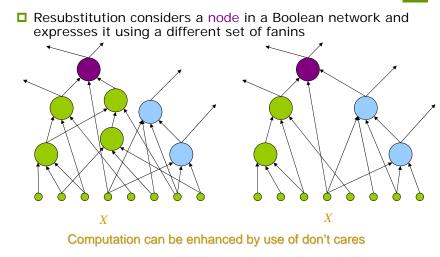
Satisfiability

- Derive set of network clauses
 Add the negation of the current care set
- Assert the output of miter to be 1
- Enumerate through the SAT
- assignments
- Add these assignments to the care set



by courtesy of Alan Mishchenko 37

Resubstitution for Circuit Minimization



by courtesy of Alan Mishchenko 38

Resubstitution with Don't Cares

Consider all or some nodes in Boolean network

- Create window
- Select possible fanin nodes (divisors)
- For each candidate *subset* of divisors
 Rule out some subsets using simulation
 Check resubstitution feasibility using SAT
 Compute resubstitution function using interpolation
 A low-cost by-product of completed SAT proofs
- Update the network if there is an improvement

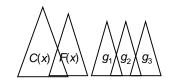
Resubstitution with Don't Cares

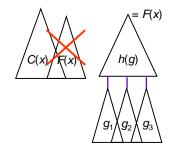
Given:

- node function F(x) to be replaced
- care set C(x) for the node
- candidate set of divisors { g_i(x) } for re-expressing F(x)

Find:

- A resubstitution function h(y) such that F(x) = h(g(x)) on the care set
- Necessary and sufficient condition: For any minterms a and b, $F(a) \neq F(b)$ implies $g_i(a) \neq g_i(b)$ for some g_i





Resubstitution

Example

Given: $E(x) = (x \oplus x)(x)$

 $\mathsf{F}(\mathsf{x}) = (\mathsf{x}_1 \oplus \mathsf{x}_2)(\mathsf{x}_2 \lor \mathsf{x}_3)$

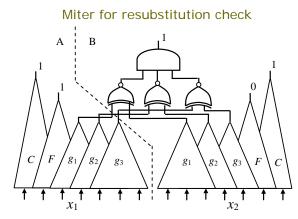
Two candidate sets: $\{g_1 = x_1'x_2, g_2 = x_1 x_2'x_3\}, \{g_3 = x_1 \lor x_2, g_4 = x_2 x_3\}$

Set $\{g_3, g_4\}$ cannot be used for resubstitution while set $\{g_1, g_2\}$ can.

x	F(x)	g ₁ (x)	g ₂ (x)	g ₃ (x)	g ₄ (x)
000	0	0	0	0	0
001	0	0	0	0	0
010	1	1	0	1	0
011	1	1	0	1	1
100	0	0	0	(1)	\bigcirc
101	1	0	1		\bigcirc
110	0	0	0	1	0
111	0	0	0	1	1

by courtesy of Alan Mishchenko 41

SAT-based Resubstitution

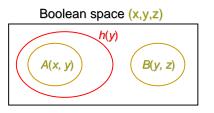


Resubstitution function exists if and only if SAT problem is unsatisfiable Note: Care set is used to enhance resubstitution check

by courtesy of Alan Mishchenko 42

SAT-based Resubstitution

- Computing dependency function h by interpolation
 - Consider two sets of clauses, A(x, y) and B(y, z), such that $A(x, y) \wedge B(y, z) = 0$
 - y are the only variables common to A and B
 - An interpolant of the pair (A(x, y), B(y, z)) is a function h(y) depending only on the common variables y such that $A(x, y) \Rightarrow h(y) \Rightarrow \neg B(y, z)$



by courtesy of Alan Mishchenko 43

SAT-based Resubstitution

- **Problem:** Find function h(y), such that $C(x) \Rightarrow [h(g(x)) \equiv F(x)]$, i.e. F(x) is expressed in terms of $\{g_i\}$
- **Solution**:
 - Prove the corresponding SAT problem "unsatisfiable"
 - Derive unsatisfiability resolution proof [Goldberg/Novikov, DATE'03]
 - Divide clauses into A clauses and B clauses
 - Derive interpolant from the unsatisfiability proof [McMillan, CAV'03]
 - Use interpolant as the dependency function, h(g)
 - Replace F(x) by h(g) if cost function improved

