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Node Minimization
Problem: 
Given a Boolean network, optimize it by 

minimizing each node as much as possible 

Note: 
Assume initial network structure is given

Typically obtained after the global optimization, e.g. 
division and resubstitution

We minimize the function associated with each 
node
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Permissible Functions of a Node
 In a Boolean network, we may represent a node 

using the primary inputs {x1,…, xn} plus the 
intermediate variables {y1,…, ym}, as long as the 
network is acyclic

Definition:  
A function gj, whose input variables are a subset 
of {x1,…, xn, y1,…, ym}, is implementable at a 
node j if 
 the variables of gj do not intersect with TFOj

TFOj = {node i: i = j or  path from j to i}
 the replacement of the function associated 

with j, say fj, by gj does not change the
functionality of the network
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Permissible Functions of a Node
 The set of implementable (or permissible)

functions at j provides the solution space of the 
local optimization at node j

TFOj = {node i: i = j or  path from j to i} 6

Prime and Irredundant Boolean 
Network
 Consider a sum-of-products expression Fj associated with a 

node j

 Definition: Fj is prime (in a multi-level sense) if for all cubes 
c  Fj, no literal of c can be removed without changing the 
functionality of the network

 Definition: Fj is irredundant if for any cube c  Fj, the 
removal of c from Fj changes the functionality of the 
network

 Definition: A Boolean network is prime and irredundant if Fj
is prime and irredundant for all j 
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Node Minimization
Goals: 
 Given a Boolean network:

1.make the network prime and irredundant
2. for a given node of the network, find a least-cost SOP 

expression among the implementable functions at the 
node

Note: 
 Goal 2 implies Goal 1
 There are many expressions that are prime and 

irredundant, just like in two-level minimization. We seek 
the best.
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Taxonomy of Don’t Cares
 External don't cares - XDC

 The set of don’t care minterms (in terms of primary 
input variables) given for each primary output is 
denoted XDCk, k=1,…,p 

 Internal don't cares - derived from the network structure
 Satisfiability don’t cares - SDC
 Observability don’t cares - ODC

 Complete Flexibility - CF
 CF is a superset of SDC, ODC, and localized XDC
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Satisfiability Don’t Cares
We may represent a node using the n primary 

inputs plus the m intermediate variables
Boolean space is Bn+m

 However, intermediate variables depend on the 
primary inputs

 Thus not all the minterms of Bn+m can occur:
 use the non-occuring minterms as don’t cares 

to optimize the node function
we get internal don’t cares even when no 

external don’t cares exist

10

Satisfiability Don’t Cares
 Example

y1 = F1 = x1
yj = Fj = y1x2

 Since y1 = x1, y1  x1 never 
occurs. So we may include these 
points to represent Fj
 Don't Cares 

 SDC = (y1  x1)+(yj y1x2)

In general,

Note: SDC  Bn+m

)(
1

jj

m

j
jj FyFySDC 


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Observability Don’t Cares
yj = x1 x2 + x1 x3
zk = x1 x2 + yj x2 + yj x3

 Any minterm of x1 x2 + x2 x3 + x2 x3
determines zk independent of yj

 The ODC of yj w.r.t. zk is the set of minterms
of the primary inputs for which the value 
of yj is not observable at zk

This means that the two Boolean networks,
 one with yj forced to 0 and 
 one with yj forced to 1 

compute the same value for zk when  x  ODCjk
 The ODC of yj w.r.t. all primary outputs is ODCj = k ODCjk

0 1{ | ( ) | ( ) | }
j j

n
jk k y k yODC x B z x z x   
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Observability Don’t Cares
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y




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Observability Don’t Cares
The ODCs of node i and node j in a 

Boolean network may not be compatible
Modifying the function of node i using ODCi

may invalidate ODCj

 It brings up the issue of compatibility ODC 
(CODC)

Computing CODC is too expensive to be 
practical
Practical approaches to node minimization often 

consider one node at a time rather than multiple 
nodes simultaneously
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External Don’t Cares
 The XDC global for an entire Boolean network is 

often given

 The XDC local for a specified window in a Boolean 
network can be computed

Question:
How do we represent XDC?
How do we translate XDC into local don’t care?

XDC is originally in PI variables
Translate XDC in terms of input variables of a node
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External Don’t Cares
Representing XDC

XDC in a 
separate 
network

multi-level Boolean network for z

y12

y11y10

XDC

x1 x4x2

f12=y10y11

y9

y3

y1

y4 y8y7

y2

or

x4

y6y5

z (output)

2 410 1 3 11y x x y x x 

x3

x3x2x1 x4x2x3x1

ODC2=y1 2 7 8 7 8 5 6f y y y y y y  

&

& & & 
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Don’t Cares of a Node
The don’t cares of a node j can be 

computed by

1

( ) ( )
j

p

ij i i jk ki
i TFO k

DC y F y F ODC XDC
 

    

FFjj

inputs

outputs

ODCODC

SS DD CC
Boolean
network
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Don’t Cares of a Node
 Theorem: The function Fj = (Fj-DCj, DCj, (Fj+DCj)) is the 

complete set of implementable functions at node j

 Corollary: Fj is prime and irredundant (in the multi-level 
sense) iff it is prime and irredundant cover of Fj

 A least-cost expression at node j can be obtained by 
minimizing Fj

 A prime and irredundant Boolean network can be obtained 
by using only 2-level logic minimization for each node j with 
the don't care DCj
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Mapping Don’t Cares to Local Space
How can ODC + XDC be used for 

optimizing a node j?
ODC and XDC are in terms of the primary 

input variables
Need to convert to the input variables of node j

yj

x1 x2 xn

yryl
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Mapping Don’t Cares to Local Space
 Definition: The local space Br of node j is the 

Boolean space spanned by the fanin variables of 
node j (plus maybe some other variables chosen 
selectively)
 A don’t care set D(yr+) computed in local space spanned 

by yr+ is called a local don’t care set. (The “+” stands for 
additional variables.)

 Solution: Map DC(x) = ODC(x) + XDC(x) to local space 
of the node to find local don’t cares, i.e.,

( ) ( ( ))
FI j

r
gD y IMG DC x



 
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Mapping Don’t Cares to Local Space
 Computation in two steps:

1. Find DC(x) in terms of primary inputs
2. Find D, the local don’t care set, by image 

computation and complementation

yj

x1 x2 xn

yryl( ) ( ( ))
FI j

r
gD y IMG DC x



 
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Mapping Don’t Cares to Local Space 
Global Function of a Node

BB nnm 

1

( , , )

( , , )   global function
j k l

j
j n

f y y
y

g x x
 






yj

x1 x2 xn

yryl
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Mapping Don’t Cares to Local Space
Don’t Cares in Primary Inputs

BDD based computation
Build BDD’s representing global functions at 

each node 
in both the primary network and the don’t care 

network, gj(x1,...,xn) 
use BDD_compose

Replace all the intermediate variables in 
(ODC+XDC) with their global BDDs

DC(x)xhDC(x,y)yxh  )(),(~

)())(,(~),(~ xhxgxhyxh 
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Mapping Don’t Cares to Local Space
 Example

XDCODCDC
xxxxxxxxDCxxxxg

yXDC2
xxxxg

yODC

z








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432143212432112

12

43211
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y12

y11y10

XDC

x1 x4x2

f12=y10y11

y9

y3

y1

y4 y8y7

y2

or

x4

y6y5

z (output)

2 410 1 3 11y x x y x x 

x3

x3x2x1 x4x2x3x1

ODC2=y1 2 7 8 7 8 5 6f y y y y y y  

&
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Mapping Don’t Cares to Local Space
Image Computation
 Local don’t cares are the set of minterms in the local space of yi

that cannot be reached under any input combination in the care 
set of yi (in terms of the input variables).

 Local don’t care set:

i.e. those patterns of (y1,...,yr) that never appear as images of 
input cares.

1 2( , , , )IMAGE [care set]
ri g g gD  

yj

x1 x2 xn

local
space

grgi image
Bn

Br

Di

image of care set under 
mapping y1,...,yr

DCi=XDCi+ODCi
care set

yi yr
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Mapping Don’t Cares to Local Space
 Example (cont’d)

y12

y11y10

XDC

x1 x4x2

f12=y10y11

y9

y3

y1

y4 y8y7

y2

or

x4

y6y5

z (output)

x3

x3x2x1 x4x2x3x1

ODC2=y1 2 7 8 7 8 5 6f y y y y y y  

&

& & & 

yyD
xxxxxxDC
xxxxxxxxDC

yODC
yODC

z

872

4242312

432143212

12

12











2 2 2 1 3 2 4 2 4( )( )DC D DC x x x x x x  
yyD 872 

yyyyf 65872


Note that D2 is given in this space y5, y6, y7, y8. 
Thus in the space (- - 10) never occurs.
Can check that
Using               , f2 can be simplified to
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Image Computation

 Two methods:
1. Transition relation method 

 f : Bn  Br  F : Bn x Br  B
(F is the characteristic function of f!)

2. Recursive image computation (omitted)

( , ) {( , ) | ( )}
           ( ( ))

           ( ( ) ( ))

i i
i r

i i i i
i r

F x y x y y f x
y f x

y f x y f x




 

 

 




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Image Computation
Transition Relation Method
 Image of set A under f:  f(A) = x(F(x,y)  A(x))

 The existential quantification x is also called “smoothing”
Note: The result is a BDD representing the image, 

i.e. f(A) is a BDD with the property that 
BDD(y) = 1  x such that f(x) = y and x  A.

A f(A)f

x y

1
where  and  

n i i ix x x x x xg g g     
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Node Simplification

inputs  Bn

fj

XDC outputs

m intermediate
nodes

Express ODC in terms of variables in Bn+m

Don’t
Care
network
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Node Simplification

ODC+XDC DC

DCDC

cares

D

cares

Minimize fj with don’t care D

Bn+m
Bn

Br

compose

image
computation

fj
local
space Br

Question: Where does SDC come into playing?
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Complete Flexibility

Complete flexibility (CF) of a node in a 
combinational network
SDC + ODC + localized XDC
Used to minimize one node at a time

Not considering compatible flexibilities among 
multiple nodes

Different from CODC, where don’t cares at different 
nodes are compatible and can minimize multiple 
nodes simultaneously
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Complete Flexibility
 Definition: A flexibility at a node is a relation (between the 

node’s inputs and output) such that any well-defined sub-
relation used at the node leads to a network that conforms 
to the external specification

 Definition: The complete flexibility (CF) is the maximum
flexibility possible at a node

Combinational
Logic Network

by courtesy of Robert Brayton 32

Complete Flexibility
 Computing complete flexibility

( , , )iI X y Z

( , ) .[ ( , , ) ( , )]i iR X y Z I X y Z S X Z  

X Z
yi

Note: Specification relation S(X,Z) may contain non-
determinism and subsumes XDC. Influence relation I(X,yi,Z)
subsumes ODC. 

cut the network and treat yi
as a pseudo primary input

by courtesy of Robert Brayton
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Complete Flexibility
 Computing complete flexibility

X Z
yi

Yi

YYii
yyii

( , ) .[ ( , ) ( , )]
                .[ ( , ) .[ ( , , ) ( , )]]
                , . [ ( , ) ( , , ) ( , )]

i i i i

i i

i i

CF Y y X E X Y R X y
X E X Y Z I X y Z S X Z
X Z E X Y I X y Z S X Z

  

  
   

Note: Environment relation E(X,Yi)
subsumes SDC. 

by courtesy of Robert Brayton 34

Complete Flexibility
 Computing complete flexibility

X Z
yi

Yi

YYii
yyii

( , ) .[ ( , ) .[ ( , , ) ( , )]]

                 , .[ ( , ) ( , , ) ( , )]

i i i i

i i

CF Y y X E X Y Z I X y Z S X Z

X Z E X Y I X y Z S X Z

   

  

Yi yi

Note: The same computation works for multiple yi’s
by courtesy of Robert Brayton
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Window and Don’t Care Compuation
 Definition: A window for a 

node in the network is the 
context in which the don’t-
cares are computed

 A window includes 
 n levels of the TFI 
 m levels of the TFO
 all re-convergent paths 

captured in this scope
 Window with its PIs and POs 

can be considered as a 
separate network

 Optimizing a window is 
more computationally 
affordable than optimizing 
an entire network

Window POs

Window PIs

n = 3

m = 3

Boolean network

by courtesy of Alan Mishchenko 36

SAT-based Don’t Care Computation

…

“Miter” constructed for the window POs

ff

ss

xx

windowwindow

ff

ss

xx

same window same window 
with inverterwith inverter

by courtesy of Alan Mishchenko
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SAT-based Don’t Care Computation
 Compute the care set

 Simulation
 Simulate the miter using random 

patterns
 Collect x minterms, for which the 

output of miter is 1
 This is a subset of a care set

 Satisfiability
 Derive set of network clauses
 Add the negation of the current care 

set
 Assert the output of miter to be 1
 Enumerate through the SAT 

assignments
 Add these assignments to the care 

set

s s

x x
n n

11

by courtesy of Alan Mishchenko 38

Resubstitution for Circuit Minimization
 Resubstitution considers a node in a Boolean network and 

expresses it using a different set of fanins

X X

Computation can be enhanced by use of donComputation can be enhanced by use of don’’t carest cares
by courtesy of Alan Mishchenko
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Resubstitution with Don’t Cares
Consider all or some nodes in Boolean 

network
Create window
Select possible fanin nodes (divisors)
 For each candidate subset of divisors

Rule out some subsets using simulation
Check resubstitution feasibility using SAT
Compute resubstitution function using interpolation

 A low-cost by-product of completed SAT proofs

Update the network if there is an improvement

by courtesy of Alan Mishchenko 40

Resubstitution with Don’t Cares
 Given: 

 node function F(x) to be replaced
 care set C(x) for the node
 candidate set of divisors {gi(x)} for  

re-expressing F(x)

 Find:
 A resubstitution function h(y) such 

that F(x) = h(g(x)) on the care set
 Necessary and sufficient condition:

For any minterms a and b, F(a) 
F(b) implies gi(a)  gi(b) for some gi

C(x) F(x) g1 g2 g3

C(x) F(x)

g1 g2 g3

h(g)

= F(x)

by courtesy of Alan Mishchenko
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Resubstitution
 Example

Given:
F(x) = (x1 x2)(x2  x3)

Two candidate sets:
{g1= x1’x2, g2 = x1 x2’x3},
{g3= x1  x2, g4 = x2 x3}

Set {g3, g4} cannot be 
used for resubstitution
while set {g1, g2} can.

x F(x) g1(x) g2(x) g3(x) g4(x)

000 0 0 0 0 0

001 0 0 0 0 0

010 1 1 0 1 0

011 1 1 0 1 1

100 0 0 0 1 0

101 1 0 1 1 0

110 0 0 0 1 0

111 0 0 0 1 1

by courtesy of Alan Mishchenko 42

SAT-based Resubstitution

 
x1 

F g1 g2 g3 

1 1 

1 

0 1 

F g3 g2 g1 C 

x2 

B A 

C 

Miter for resubstitution check

Resubstitution function exists if and only if SAT problem is unsatisfiable
Note: Care set is used to enhance resubstitution check

by courtesy of Alan Mishchenko
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SAT-based Resubstitution
 Computing dependency function h by 

interpolation
 Consider two sets of clauses, A(x, y) and B(y, z), such 

that A(x, y)  B(y, z) = 0
 y are the only variables common to A and B
 An interpolant of the pair (A(x, y), B(y, z)) is a function 

h(y) depending only on the common variables y such 
that  A(x, y)  h(y)  B(y, z)

AA((xx,, yy)) BB((yy,, zz))

hh((yy))

Boolean space Boolean space ((x,y,zx,y,z))

by courtesy of Alan Mishchenko 44

SAT-based Resubstitution
 Problem: Find function h(y), such that C(x)  [h(g(x))  F(x)], i.e. 

F(x) is expressed in terms of {gi}
 Solution:

 Prove the corresponding SAT problem “unsatisfiable”
 Derive unsatisfiability resolution proof [Goldberg/Novikov, DATE’03]
 Divide clauses into A clauses and B clauses
 Derive interpolant from the unsatisfiability proof [McMillan, CAV’03]
 Use interpolant as the dependency function, h(g)
 Replace F(x) by h(g) if cost function improved 

x1 

f g1 g2 g3 

1 1 

1 

0 1 

f g3 g2 g1 C 

x2 

B A 

C 

by courtesy of Alan Mishchenko


