Logic Synthesis and
Veritication I

Jie-Hong Roland Jiang
NI

/\\
Department of Electrical Engineering ‘\
National Taiwan University

Fall 2012

Technology Mapping

Reading:
Logic Synthesis in a Nutshell
Section 4

most of the following slides are by
courtesy of Andreas Kuehlmann

2

Technology Independent Optimization

0 Example /'
t, =a+ bc g

t,=d+e ¢ S’
5
t; =ab +d
i L+ bt
t, = t;t, + fg 4 F
to = t,h + t,t, bt +fg |
F=tg
b L [
atbc d+e ab+d
An unoptimized set of logic equations consisting of literals

Technology Independent Optimization

CDExample (cont'd)

F
t,=d+e /
I;=at,+cC t,

t, = t,t, + fgh b

4~ 1 tyts + fgh = ————

F=1, at, +c
t, t, L
d+e b+h

An optimized set of logic equations consisting of literals

Technology Mapping

O Implement an optimized Boolean network using a

set of pre-designed and pre-characterized gates
from a

B Each gate has a (e.g. area, delay, power, etc.)
library of primitive gates j)} é} j}}

Ba

Rap

|

- DD
2 D
4 D
— >

Technology Mapping

0 Two approaches:
1. Rule based: LSS

2. Algorithmic: DAGON

0 Represent the netlist to be mapped in terms of a
selected set of base functions, e.g.,
= Base functions from a
= Such a netlist is called the subject graph

0 Each gate in the library is likewise represented using
the base functions

= Represent each gate in ways
= This generates pattern graphs

set

Algorithmic Technology Mapping

0 A cover is a collection of pattern graphs such that

B every node of the subject graph is in one (or
more) pattern graphs
B each required by a pattern graph is actually an

of some other pattern graph

] For area minimization, the cost of the cover is the
of the gates in the cover

0 Technology mapping problem:

Find a minimum cost covering of the subject
graph by choosing from the collection of pattern
graphs for all the gates in the library

Subject Graph

Mt

~ ~ ~-

w N
I TR TETI]

Q T Q

=

NT o4 4

+:T('D

(@]

(@)

Pattern Graphs

0 Example
® (IWLS library) xor (5)

inv(1)

>
nand3 (3)
:DnandZ(z)

:[[>>j [nor(2) :{;}_D_DD}DJSLB)
E [20121 (3) oai22 (4)

9

Subject Graph Covering (1)

—+
N

~ ~ ~-
w N
I TR TETI]
Q T Q
—+
N+++
> D
(@]
(@] —_—

)

Total cost = 23

10

Subject Graph Covering (2)

[0 Example f and2(3)
hodre D>
t,=b+h @ N
t,=at,+c 9 a0i22(4)
t,=tt;+fgh 4 | or2(3)
F =

N e } w F

or2(3) ZD
nand2(2) K /

Total cost = 18
nand2(2)

inv(1) 11

Subject Graph Covering (3)

0 Example f nand3(3)
d+e
a

t, = 7

t, =

t,=at,+ c 9

t, = tit;+ fgh 4 and2(3)
F =

NS
N

inv(1) 12

0ai21(3)

Total cost = 15

nand2(2)

DAG Covering

O

B Logic network after technology independent optimization
B A library of gates with their costs

O

B A netlist of gates (from library) which minimizes total
cost

0 General Approach:

B Construct a subject DAG (directed acyclic graph) for the
network

B Represent each gate in the target library by pattern
DAG’s

B Find an optimal-cost covering of subject DAG using the
collection of pattern DAG’s

13

DAG Covering

CComplexity
® NP-hard

B Remains NP-hard even when the nodes have
out-degree < 2

W If subject DAG and pattern DAG's are trees,
efficient algorithms exist

14

DAG Covering
Binate Covering Approach

0 Compute possible matches {m, } of pattern graphs for
each node in the subject graph

O Using a variable for each match of a pattern graph in
the subject graph,

O Write a for each node of the subject graph indicating
which matches cover this node (each node has to be
covered)

® e.g., if a subject node is covered by matches {m,, mg,
m,, }, then the clause would be (m, + mg + m,,)

0 Repeat for each subject node
and take the product over all m;m,...m
subject nodes

15

DAG Covering
Binate Covering Approach

0 Any satisfying assignment guarantees that all
subject nodes are covered, but does
guarantee that other matches chosen create

needed as for a given match

not an output
of a chosen
match

] Resolve this problem by adding clauses

16

DAG Covering
Binate Covering Approach

0 Let match have subject nodes as its n
AT Is chosen, one of the matches that
realizes v~ must also be chosen for each input

0 Let = be the disjunctive expression in the
variables giving the possible matches which
realize v as an output node. Selecting match
implies satisfying each of the expressions for
j =1 ... n. This can be written

m = (S;.. S (M+(S;.. S M+S,)..(m+5,))

17

DAG Covering
Binate Covering Approach

[Also, one of the matches for each
of the circuit must be selected

0 An assignment to variables that satisfies the
above covering expression is a graph cover

] For area optimization, each match has a cost
that is the area of the gate the match
represents

0 The goal is a satisfying assignment with the
total

M Find a least-cost prime:

Oif a variable its cost is (), else its cost Iin
O means that is

18

DAG Covering
Binate Covering Approach

ClBinate covering is than
unate covering

B Unlike unate covering, variables are present in
both their and forms in the
covering expression

B The covering expression is a binate function,
and the problem is referred to as the

19
|
D Example Match | Gate Cost | Inputs | Root | Covers

m, inv 1 b o1 J1

m, inv 1 a d, [eP)

mg nand2 | 2 91,92 93 93

m, nand2 | 2 a, b 94 94

mg nand2 | 2 93,94 Js s

mg inv 1 94 e 96

m;, nand2 | 2 Je.C g 97

mg inv 1 g, Os Js

Mg nand2 | 2 gg,d 99 9o

My nand3 |3 96.C.d | Qo 97.9s:9

my, nand3 | 3 a,b,c g7 94,9697

m;, xnor2 5 a,b Os 91,92,93,94,95

my; nand4 | 4 a,b,c,d | go 94,96,97,98.99
g_ my, oai2l 3 a,b,g, | 9s 91,92,93,95
C

0

d } 2

20

DAG Covering
Binate Covering Approach

0 Example (cont'd)

B Generate constraints that each node g; be covered by
some match

B To ensure that a cover leads to a valid circuit, extra
clauses are generated

O For example, selecting requires that

= a match be chosen which produces (. as an output, and
= a match be chosen which produces ¢, as an output

B The only match which produces ¢, is , and the only
match which produces . is

21

DAG Covering
Binate Covering Approach

CDExample (cont'd)

® The primary output nodes . and must be
realized as an output of some match
COThe matches which realize . as an output are

OThe matches which realize ¢, as an output are

B Note:

COA match which requires a primary input as an input is
satisfied trivially

COMatches are driven only by
primary inputs and do not require additional clauses

22

DAG Covering
Binate Covering Approach

O Example (cont'd)
B Finally, we get B B -
(mg+my) (Mg+ my) (M; + mg) (Mg+ my) (Mg +my,)
(m; + mg) (Mg + my) (Mg + Mg) (My, + Mg)
(my, + my) (Mg + my, + my,) (Mg + Mg+ my3)

B The covering expression has 58 implicants

B The least cost prime implicant is B
m; Mg Mg M; Mg Mg My My, Myz Myy

B This uses two gates for a cost of 9 gate units. This corresponds
to a cover which selects matches m,, (xor2) and m,; (nand4).

23
|
m Example (Cont’d) Match | Gate Cost | Inputs | Root | Covers
m, inv 1 b 91 91
m, inv 1 a 92 92
m; nand2 | 2 01,92 93 9s
nand2 | 2 a, b g, a4
nand2 | 2 03,94 Js Is
inv 1 a4 96 e
nand2 | 2 Js,C g, g7
inv 1 g, Js Js
nand2 | 2 Jg.d Jdo 9o
nand3 | 3 ge.C.d 9o 07:9s:99
nand3 | 3 a,b,c [94,96,97
xnor2 5 a,b Js 91,92,93,94.95
nand4 | 4 a,b,c,d | gg 94,96:97:98:99
oai2l 3 a,b,g, Js 91,92,93,95

24

Note: g, is covered by both matches

DAG Covering
Binate Covering Approach

0 Complexity
® DAG-covering: constraints

B More general than unate covering
OFinding least cost prime of a binate function
= Even finding a feasible solution is NP-complete (SAT)
= For unate covering, finding a feasible solution is easy
H Given a , the binate covering provides the
solution to the technology-mapping problem
O , better results may be obtained with a different
initial decomposition into 2-input NANDs and inverters
B Methods to solve the binate covering formulation:
OBranch and bound, BDD-based
O Expensive even for moderate-size networks

25

Tree Covering

COWhen the subject graph and pattern
graphs are , an efficient algorithm to
find the best cover exists

1Solvable with

26

Tree Covering

1. subject graph into of trees
2. Cover each tree optimally using dynamic
programming
B Given:

O Subject trees (networks to be mapped)
[0 Forest of patterns (gate library)
B For each node N of a subject tree
OO0 Recursive Assumption: for all children of N, a
match is known
O Compute cost of each pattern tree which matches at N,
Cost = SUM of best costs of implementing each

of pattern the cost of the pattern
= Cost of a of the tree is O

O Choose least cost matching pattern for implementing N

cost

27

}

Tree Covering

O Algorithm OPTIMAL AREA COVER(node) {
foreach 1nput of node {

OPTIMAL_AREA COVER(input);//satisfies recur. assumption

}
// Using these, fTind the best cover at node
node—area = INFINITY;

node—smatch = 0;
foreach match at node {
area = match—area;
foreach pin of match {
area = area + pin—area;
ks
ifT (area < node—area) {
node—area = area;
node—smatch = match;

}
}

28

Tree Covering

0 Example Library
nand2 = 3
inv =2
nand3 =4

nand2(3) nand4 =5
= e
] nand2(8)... 32221 -4
inv(2) nand2(13)
e "a0i21(18)
e o |nv6) el T .nand4
a2 et 4046 handa(on) R
; andz(4) nar},d'2€|7)A i panda(18) “ hand3(23)
nand4 nand3(4) nand4(22)
29
Tree Covering
CComplexity
B Complexity is controlled by finding sub-
trees of the subject graph which are
iIsomorphic to a pattern tree
] complexity in both size of subject tree

and size of collection of pattern trees

30

Tree Covering

] Partition subject DAG into trees
= break the graph at all multiple-fanout
points
OO no duplication or overlap in the resulting trees
O drawback - sometimes results in many trees
Leads to
% trees
Dt
31

Tree Covering

] Partition subject DAG into trees
m from a single output, form a large
tree back to the primary inputs

O map successive outputs until they hit match output formed
from mapping previous primary outputs
= Duplicates some logic (where trees overlap)
= Produces much larger trees, potentially better area results

output

32

Min-Delay Technology Mapping

O For trees:
B identical to min-area covering

B use optimal delay values within the dynamic programming
paradigm

0 For DAGs:
B if delay does not depend on number of fanouts:
use dynamic programming as presented for trees

B |eads to optimal solution in polynomial time
O Assume logic replication is okay

0 Combined objective
B e.g. apply delay as first criteria, then area as second
B combine with static timing analysis to focus on critical paths

33

Decomposition and Technology
Mapping

Common Approach:
B Phase 1: Technology independent optimization
O commit to a particular Boolean network
O algebraic decomposition used
B Phase 2: AND2/INV decomposition

OO0 commit to a particular decomposition of a general Boolean
network using 2-input ANDs and inverters

B Phase 3: Technology mapping (tree-mapping)
Drawbacks:
Procedures in each phase are

B Phase 1 and Phase 2 make without
knowing much about constraints and library

B Phase 3 knows about constraints and library, but
solution space is by decisions made earlier

34

Combined Decomposition and
Technology Mapping

] Incorporate technology independent procedures
into technology mapping

0 Lehman-Watanabe Algorithm:

O Key ldea:
W Efficiently encode a of AND2/INV
decompositions into a structure called a

mapping graph

m Apply a modified tree-based technology
mapper while
on the mapping graph

35

Combined Decomposition and

Technology Mapping

CIOutline
B Mapping Graph
COEncodes a set of AND2/INV decompositions
M Tree-mapping on a mapping graph:

B A-mapping:
O dynamic logic decomposition
Csolution space: Phase 3 + Phase 2

B A-mapping:
O dynamic logic decomposition

Osolution space: Phase 3 + Phase 2 + Algebraic
decomposition (Phase 1)

36

Combined Decomposition and
Technology Mapping

COAND2/INV decomposition

W E.g., f = abc can be represented in various
ways

a a
b f
f b
Cc Cc
a
b
o——Do—f
C

37

Combined Decomposition and
Technology Mapping

C0Combine different AND2/INV
decompositions with a choice node

Bt S
g T
ity S0

38

Combined Decomposition and
Technology Mapping

0 The previous AND2/INV decompositions can be
represented more compactly as:

a
S
C
a f
, g O
C

] This representation encodes even more

decompositions, e.g.,

35[
b
C

39

Combined Decomposition and
Technology Mapping

O Mapping graph is a Boolean
network containing the following
four modifications: ugates

[| choices on different
decompositions ab
| functions written in terms
of each other, e.g. inverter chain a —
with an arbitrary length b

] No two choice nodes H —C
with same function. No two AND2s C be
with same fanin. Z Ta

[] just for efficient b abc
implementation - do not explicitly
represent choice nodes and
inverters ac

O For CHT benchmark (MCNC'91), there are
AND2/INV decompositions. All
are encoded with only ugates
containing AND2s in total.

40

Combined Decomposition and
Technology Mapping

O Graph-Mapping on Trees™:
Apply dynamic programming
from primary inputs:
B find matches at each AND2
and INV, and
B retain the cost of a best
cover at each node
O a match may choice nodes
[the cost at a choice node is the
of fanin costs
B fixed-point iteration on each
until costs of all the nodes in the

cycle become stable
OO Run-time is typically in the size of the mapping graph

* mapping graph may not be a tree, but any multiple fanout node just
represents several copies of same function.
41

Combined Decomposition and
Technology Mapping

O Example
B Graph mapping on trees for min delay
O best choice if c is later than a and b.

f=ab
c il
13

f=abc

— f=(ab)c

42

Combined Decomposition and
Technology Mapping

O Graph mapping
Graph-mapping(1+) = ming_, { tree-mapping(0) }
mapping graph

ANDZ2/INV decomposition encoded in u
B Graph-mapping finds an optimal tree implementation for

each primary output all AND2/INV decompositions
encoded in p
B Graph-mapping is as applying tree-mapping

, but is typically exponentially faster

43

Combined Decomposition and

Technology Mapping

O A-mapping
Given a Boolean network 1,

B Generate a mapping graph
® For each node of 1,

O encode all AND2 decompositions for each term
= E.g., abc = 3 AND2 decompositions: a(bc), c(ab), b(ca)
O encode all AND2/INV decompositions for the term

= E.g., p+g+r = 3 AND2/INV decompositions:
p+(q+r), r+(p+q), g+(r+p)
O In practice, 1 is preprocessed so each node has at most 10
product terms and each term has at most 10 literals

B Apply graph-mapping on

44

Combined Decomposition and

Technology Mapping
O A-mapping
Flor the mapping graph 1 generated for a Boolean network
et

[| be the set of AND2/INV decompositions encoded in pn

u be the closure of the set of AND2/INV decompositions of n
under the associative and inverter transformations:

s Dy

Associative

transform j E j E lpgr?srf‘g?m
a

b

OO0 Theorem: An = Ln

45

Combined Decomposition and

Technology Mapping
C1Dynamic logic decomposition
B During graph-mapping, modify the
mapping graph: find D-patterns and F-
patterns

NG Ll

ab +ac a(b+c)

46

Combined Decomposition and
Technology Mapping

O Dynamic logic decomposition bw
g or®
C
a
c b

b

o T

Note: Adding F-patterns may introduce new

D-patterns which may imply new F-patterns 47

Combined Decomposition and
Technology Mapping

O A-mapping
Given a Boolean network n,

B Generate a mapping graph p

B Iteratively apply graph mapping on pu, while performing
logic decomposition until nothing changes in u

O Before finding matches at an AND2 in u, check if D-pattern
matches at the AND2. If so, add the corresponding F-pattern

O In practice, terminate the procedure when a feasible solution is
found b

.]

48

Combined Decomposition and

Technology Mapping

0 A-mapping
For the mapping graph pu generated for a Boolean
network n, let

= be the set of AND2/INV decompositions encoded in
the mapping graph.

= be the closure of A, under the distributive
transformation:

b ' b a
a
C [C

0 Theorem: A, = Dn

49

Combined Decomposition and

Technology Mapping

0 Theorem: If
1.7m* is an arbitrary Boolean network obtained

from n by decomposition, and

2.0 is an arbitrary decomposition of
n*

then

0 The resulting mapping graph encodes the
AND2/INV decompositions of algebraic
decompositions of n

50

Combined Decomposition and
Technology Mapping

O A-mapping captures all AND2/INV decompositions of n:
OO0 A-mapping captures all algebraic decompositions:
Phase 1. o,

arbitrary algebraic
decomposition

Mapping graph
.., associative transform

‘e
*
‘e
3

. L, < A-mapping
n*e A
Phase 2: Dynamic decomposition
arbitrary AND2/INV ™, distributive transform
decomposition \
‘o A D, < A-mapping

il
51

Combined Decomposition and
Technology Mapping

O Summary
B Logic decomposition during technology mapping
O Efficiently encode a on ANDZ2/INV decompositions
O perform logic decomposition
B Two mapping procedures

O optimal over all AND2/INV decompositions
(associative rule)

O optimal over all algebraic decompositions
(distributive rule)

B Was implemented and used for commercial design
projects
B Extended for

O considers all retiming possibilities and algebraic
factors across latches

52

