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Technology Mapping
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Technology Independent Optimization

Example
t1 = a + bc
t2 = d + e
t3 = ab + d
t4 = t1t2 + fg
t5 = t4h + t2t3

F = t5’

d+ea+bc

t5’

t1t2 + fg

F

ab+d

t4h + t2t3

t1 t2 t3

t4

t5

An unoptimized set of logic equations consisting of 17 literals
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Technology Independent Optimization

Example (cont’d)
t1 = d + e
t2 = b + h
t3 = at2 + c
t4 = t1t3 + fgh
F = t4’

An optimized set of logic equations consisting of 13 literals

d+e b+h

t4’

at2 +c

t1t3 + fgh

F

t1 t2

t3
t4
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Technology Mapping

 Implement an optimized Boolean network using a 
set of pre-designed and pre-characterized gates 
from a library
 Each gate has a cost (e.g. area, delay, power, etc.)

library of primitive gates

6

Technology Mapping

 Two approaches:
1. Rule based: LSS
2. Algorithmic: DAGON

 Represent the netlist to be mapped in terms of a 
selected set of base functions, e.g., {NAND2, INV}
 Base functions from a functionally complete set
 Such a netlist is called the subject graph

 Each gate in the library is likewise represented using 
the base functions 
 Represent each gate in all possible ways
 This generates pattern graphs
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Algorithmic Technology Mapping

 A cover is a collection of pattern graphs such that
 every node of the subject graph is contained in one (or 

more) pattern graphs 
 each input required by a pattern graph is actually an 

output of some other pattern graph (i.e. the inputs of 
one gate must exist as outputs of other gates)

 For area minimization, the cost of the cover is the 
sum of the areas of the gates in the cover

 Technology mapping problem:
Find a minimum cost covering of the subject 
graph by choosing from the collection of pattern 
graphs for all the gates in the library
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Subject Graph

 Example
t1 = d + e
t2 = b + h
t3 = at2 + c
t4 = t1t3 + fgh
F = t4’ F

f

g

d

e

h

b

a

c
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Pattern Graphs

 Example 
 (IWLS library)

inv(1)

nand3 (3)

oai22 (4)

nor(2)
nor3 (3)

xor (5)

aoi21 (3)

nand2(2)
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Subject Graph Covering (1)

 Example
t1 = d + e
t2 = b + h
t3 = at2 + c
t4 = t1t3 + fgh
F = t4’

F

f

g

d

e

h

b

a

c
Total cost = 23
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Subject Graph Covering (2)

 Example
t1 = d + e
t2 = b + h
t3 = at2 + c
t4 = t1t3 + fgh
F = t4’

Total cost = 18

f

g

d

e

h

b

a

c

aoi22(4)

and2(3)

or2(3)

or2(3)

nand2(2)

nand2(2)

inv(1)

F
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Subject Graph Covering (3)

 Example
t1 = d + e
t2 = b + h
t3 = at2 + c
t4 = t1t3 + fgh
F = t4’

Total cost = 15

F

f

g

d

e

h

b

a

c

nand3(3)

oai21(3)
oai21 (3)

and2(3)

inv(1)

nand2(2)
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DAG Covering

 Input:
 Logic network after technology independent optimization
 A library of gates with their costs

Output:
 A netlist of gates (from library) which minimizes total 

cost

 General Approach:
 Construct a subject DAG (directed acyclic graph) for the 

network
 Represent each gate in the target library by pattern 

DAG’s
 Find an optimal-cost covering of subject DAG using the 

collection of pattern DAG’s
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DAG Covering

Complexity

NP-hard

Remains NP-hard even when the nodes have 

out-degree  2

 If subject DAG and pattern DAG’s are trees, 

efficient algorithms exist



15

DAG Covering
Binate Covering Approach

 Compute all possible matches {mk } of pattern graphs for 
each node in the subject graph

 Using a variable mi for each match of a pattern graph in 
the subject graph, (mi =1 if match is chosen)

 Write a clause for each node of the subject graph indicating 
which matches cover this node (each node has to be 
covered)
 e.g., if a subject node is covered by matches {m2, m5, 

m10 }, then the clause would be (m2 + m5 + m10)
 Repeat for each subject node 

and take the product over all 
subject nodes (CNF)

m1 m2 . . . mk

n1
n2
.
.
.
nl

nodes
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DAG Covering
Binate Covering Approach

 Any satisfying assignment guarantees that all 
subject nodes are covered, but does not
guarantee that other matches chosen create 
outputs needed as inputs for a given match

 Resolve this problem by adding additional clauses

not an output
of a chosen 
match
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DAG Covering
Binate Covering Approach

 Let match mi have subject nodes vi1,…,vin as its n
inputs. If mi is chosen, one of the matches that 
realizes vij must also be chosen for each input j  
(if j not a primary input).

 Let Sij be the disjunctive expression in the 
variables mk giving the possible matches which 
realize vij as an output node. Selecting match mi
implies satisfying each of the expressions Sij for  
j = 1 … n. This can be written

(mi  (Si1 … Sin ) )  (mi + (Si1 … Sin ) ) ((mi + Si1 ) … (mi + Sin ) )
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DAG Covering
Binate Covering Approach

 Also, one of the matches for each primary output
of the circuit must be selected

 An assignment to variables mi that satisfies the 
above covering expression is a legal graph cover

 For area optimization, each match mi has a cost 
ci that is the area of the gate the match 
represents

 The goal is a satisfying assignment with the least
total cost
 Find a least-cost prime: 

if a variable mi = 0 its cost is 0, else its cost in ci

mi  = 0 means that match i is not chosen
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DAG Covering
Binate Covering Approach

Binate covering is more general than 
unate covering
Unlike unate covering, variables are present in 

both their true and complemented forms in the 
covering expression

 The covering expression is a binate function, 
and the problem is referred to as the binate-
covering problem
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DAG Covering
Binate Covering Approach

 Example

1

2

3

4

5

6

7 8
9

a
b

c
d

o1

o2

g1,g2,g3,g5g5a,b,g43oai21m14

g4,g6,g7,g8,g9g9a,b,c,d4nand4m13

g1,g2,g3,g4,g5g5a,b5xnor2m12

g4,g6,g7g7a,b,c3nand3m11

g7,g8,g9g9g6,c,d3nand3m10

g9g9g8,d2nand2m9

g8g8g71invm8

g7g7g6,c2nand2m7

g6g6g41invm6

g5g5g3,g42nand2m5

g4g4a, b2nand2m4

g3g3g1,g22nand2m3

g2g2a1invm2

g1g1b1invm1

CoversRootInputsCostGateMatch
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DAG Covering
Binate Covering Approach

 Example (cont’d)
 Generate constraints that each node gi be covered by 

some match 
(m1 + m12 + m14) (m2 + m12 + m14) (m3 + m12 + m14)
(m4 + m11 + m12 + m13) (m5 + m12 + m14)
(m6 + m11 + m13) (m7 + m10 + m11 + m13)
(m8 + m10 + m13) (m9 + m10 + m13)

 To ensure that a cover leads to a valid circuit, extra 
clauses are generated
For example, selecting m3 requires that

 a match be chosen which produces g2 as an output, and
 a match be chosen which produces g1 as an output

 The only match which produces g1 is m1, and the only 
match which produces g2 is m2
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DAG Covering
Binate Covering Approach

Example (cont’d)
 The primary output nodes g5 and g9 must be 

realized as an output of some match
The matches which realize g5 as an output are  m5, 

m12, m14

The matches which realize g9 as an output are  m9, 
m10, m13

Note:
A match which requires a primary input as an input is 

satisfied trivially
Matches m1,m2,m4,m11,m12,m13 are driven only by  

primary inputs and do not require additional clauses
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DAG Covering
Binate Covering Approach

 Example (cont’d)
 Finally, we get

(m3 + m1) (m3 + m2) (m3 +m5) (m5 + m4) (m6 + m4)
(m7 + m6) (m8 + m7) (m8 +m9) (m10 + m6)
(m14 + m4) (m5 + m12 + m14) (m9 + m10 + m13) 

 The covering expression has 58 implicants

 The least cost prime implicant is
m3 m5 m6 m7 m8 m9 m10 m12 m13 m14

 This uses two gates for a cost of 9 gate units. This corresponds 
to a cover which selects matches m12 (xor2) and m13  (nand4).
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DAG Covering
Binate Covering Approach

 Example (cont’d)

g1,g2,g3,g5g5a,b,g43oai21m14

g4,g6,g7,g8,g9g9a,b,c,d4nand4m13

g1,g2,g3,g4,g5g5a,b5xnor2m12

g4,g6,g7g7a,b,c3nand3m11

g7,g8,g9g9g6,c,d3nand3m10

g9g9g8,d2nand2m9

g8g8g71invm8

g7g7g6,c2nand2m7

g6g6g41invm6

g5g5g3,g42nand2m5

g4g4a, b2nand2m4

g3g3g1,g22nand2m3

g2g2a1invm2

g1g1b1invm1

CoversRootInputsCostGateMatch

1

2

3

4

5

6

7 8
9

a
b

c
d

o1

o2

m3m5m6m7m8m9m10 m12 m13m14

Note: g4 is covered by both matches
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DAG Covering
Binate Covering Approach

 Complexity
 DAG-covering: covering + implication constraints
 More general than unate covering

Finding least cost prime of a binate function 
 Even finding a feasible solution is NP-complete (SAT) 
 For unate covering, finding a feasible solution is easy

 Given a subject graph, the binate covering provides the 
exact solution to the technology-mapping problem
However, better results may be obtained with a different 

initial decomposition into 2-input NANDs and inverters

 Methods to solve the binate covering formulation:
Branch and bound, BDD-based
Expensive even for moderate-size networks
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Tree Covering

When the subject graph and pattern 
graphs are trees, an efficient algorithm to 
find the best cover exists

Solvable with dynamic programming
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Tree Covering

1. Partition subject graph into forest of trees
2. Cover each tree optimally using dynamic 

programming
 Given:

 Subject trees (networks to be mapped)
 Forest of patterns (gate library)

 For each node N of a subject tree
 Recursive Assumption: for all children of N, a best cost 

match (which implements the node) is known
 Compute cost of each pattern tree which matches at N, 

Cost =  SUM of best costs of implementing each 
input of pattern plus the cost of the pattern
 Cost of a leaf of the tree is 0

 Choose least cost matching pattern for implementing N
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Tree Covering
 Algorithm OPTIMAL_AREA_COVER(node) {

foreach input of node {
OPTIMAL_AREA_COVER(input);//satisfies recur. assumption

}
// Using these, find the best cover at node 
nodearea = INFINITY;
nodematch = 0;
foreach match at node {

area = matcharea;
foreach pin of match {

area = area + pinarea;
}
if (area < nodearea) {

nodearea = area;
nodematch = match;

}
}

}
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Tree Covering

 Example

nand2(3)

inv(2)

nand2(8)
nand2(13)

inv(2)

nand2(3)
inv(5)

and2(4)

inv(6)
and2(8)

nand2(7)
nand3(4)

nand2(22)
nand3(21)
nand4(18)

inv(20)
aoi21(18)

nand2(21)
nand3(23)
nand4(22)nand4

aoi21

nand4

Library:
nand2 = 3
inv     = 2
nand3 = 4
nand4 = 5
and2  =  4
aoi21 =  4
oai21  = 4
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Tree Covering

Complexity
Complexity is controlled by finding all sub-

trees of the subject graph which are 
isomorphic to a pattern tree

 Linear complexity in both size of subject tree 
and size of collection of pattern trees
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Tree Covering

 Partition subject DAG into trees
 Trivial partition: break the graph at all multiple-fanout

points
no duplication or overlap in the resulting trees
drawback - sometimes results in many small trees

Leads to 
3 trees
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Tree Covering

 Partition subject DAG into trees
 Single-cone partition: from a single output, form a large 

tree back to the primary inputs
map successive outputs until they hit match output formed 

from mapping previous primary outputs
 Duplicates some logic (where trees overlap)
 Produces much larger trees, potentially better area results

output

output
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Min-Delay Technology Mapping
 For trees:

 identical to min-area covering
 use optimal delay values within the dynamic programming 

paradigm

 For DAGs:
 if delay does not depend on number of fanouts: 

use dynamic programming as presented for trees
 leads to optimal solution in polynomial time

 Assume logic replication is okay

 Combined objective
 e.g. apply delay as first criteria, then area as second
 combine with static timing analysis to focus on critical paths

34

Decomposition and Technology 
Mapping

Common Approach:
 Phase 1: Technology independent optimization

commit to a particular Boolean network
algebraic decomposition used

 Phase 2: AND2/INV decomposition
commit to a particular decomposition of a general Boolean 

network using 2-input ANDs and inverters
 Phase 3: Technology mapping (tree-mapping)

Drawbacks:
Procedures in each phase are disconnected:
 Phase 1 and Phase 2 make critical decisions without 

knowing much about constraints and library
 Phase 3 knows about constraints and library, but 

solution space is restricted by decisions made earlier
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Combined Decomposition and 
Technology Mapping

 Incorporate technology independent procedures 
(Phase 1 and Phase 2) into technology mapping

 Lehman-Watanabe Algorithm:

 Key Idea:
 Efficiently encode a set of AND2/INV 

decompositions into a single structure called a 
mapping graph

Apply a modified tree-based technology 
mapper while dynamically performing algebraic 
logic decomposition on the mapping graph
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Combined Decomposition and 
Technology Mapping

Outline
Mapping Graph

Encodes a set of AND2/INV decompositions

 Tree-mapping on a mapping graph: graph-
mapping

-mapping:
without dynamic logic decomposition
solution space: Phase 3 + Phase 2

 -mapping:
with dynamic logic decomposition
solution space: Phase 3 + Phase 2 + Algebraic 

decomposition (Phase 1)
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Combined Decomposition and 
Technology Mapping

AND2/INV decomposition
 E.g., f = abc can be represented in various 

ways

f

a

b

c

a

b

c

a

b
c

f

f
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Combined Decomposition and 
Technology Mapping

Combine different AND2/INV 
decompositions with a choice node

a

b

c

a
b

c

a

b
c
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Combined Decomposition and 
Technology Mapping

 The previous AND2/INV decompositions can be 
represented more compactly as:

 This representation encodes even more 
decompositions, e.g.,

a
b

c
a

b
c





f

b
c

a
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Combined Decomposition and 
Technology Mapping
 Mapping graph is a Boolean 

network containing the following 
four modifications:
 Choice node: choices on different 

decompositions
 Cyclic: functions written in terms 

of each other, e.g. inverter chain 
with an arbitrary length

 Reduced: No two choice nodes 
with same function. No two AND2s 
with same fanin. (like BDD node 
sharing)

 Ugates: just for efficient 
implementation - do not explicitly 
represent choice nodes and 
inverters
 For CHT benchmark (MCNC’91), there are 

2.2x1093 AND2/INV decompositions. All 
are encoded with only 400 ugates
containing 599 AND2s in total.

b
c

a

a
b

c

ab

bc

ac

abc

ugates
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Combined Decomposition and 
Technology Mapping

 Graph-Mapping on Trees*:
Apply dynamic programming 
from primary inputs:
 find matches at each AND2 

and INV, and 
 retain the cost of a best 

cover at each node
 a match may contain choice nodes
 the cost at a choice node is the 

minimum of fanin costs
 fixed-point iteration on each cycle,

until costs of all the nodes in the 
cycle become stable

 Run-time is typically linear in the size of the mapping graph

* mapping graph may not be a tree, but any multiple fanout node just
represents several copies of same function.

b
c

a

b
c

a

ab

bc

ac

abc

AND3
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Combined Decomposition and 
Technology Mapping

 Example
 Graph mapping on trees for min delay

 best choice if c is later than a and b.

subject graph library pattern graph
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Combined Decomposition and 
Technology Mapping

 Graph mapping
Graph-mapping(  ) = min { tree-mapping() }

: mapping graph
: AND2/INV decomposition encoded in 
 Graph-mapping finds an optimal tree implementation for 

each primary output over all AND2/INV decompositions 
encoded in 

 Graph-mapping is as powerful as applying tree-mapping
exhaustively, but is typically exponentially faster
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Combined Decomposition and 
Technology Mapping

 -mapping
Given a Boolean network ,
 Generate a mapping graph :
 For each node of ,

encode all AND2 decompositions for each product term
 E.g., abc  3 AND2 decompositions: a(bc), c(ab), b(ca)

encode all AND2/INV decompositions for the sum term
 E.g., p+q+r  3 AND2/INV decompositions:

p+(q+r), r+(p+q), q+(r+p)

In practice,  is preprocessed so each node has at most 10 
product terms and each term has at most 10 literals

 Apply graph-mapping on 
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Combined Decomposition and 
Technology Mapping

 -mapping
For the mapping graph  generated for a Boolean network , 
let 
 L be the set of AND2/INV decompositions encoded in 
  be the closure of the set of AND2/INV decompositions of 

under the associative and inverter transformations:

 Theorem:  = L

a
b

c

a
c

b

Associative
transform

Inverter
transform
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Combined Decomposition and 
Technology Mapping

Dynamic logic decomposition
During graph-mapping, dynamically modify the 

mapping graph: find D-patterns and add F-
patterns

D-pattern: acab 

a

b ab

cc

F-pattern: )( cba 
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Combined Decomposition and 
Technology Mapping

 Dynamic logic decomposition

a
b

c

ab

c

b

c

a c

a

a
b
c

b

Note: Adding F-patterns may introduce new 
D-patterns which may imply new F-patterns
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Combined Decomposition and 
Technology Mapping

 -mapping
Given a Boolean network , 
 Generate a mapping graph 
 Iteratively apply graph mapping on , while performing 

dynamic logic decomposition until nothing changes in 
 Before finding matches at an AND2 in , check if D-pattern 

matches at the AND2.  If so, add the corresponding F-pattern
 In practice, terminate the procedure when a feasible solution is

found
b

c

a c

a

a
b
c

b
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Combined Decomposition and 
Technology Mapping

 -mapping
For the mapping graph  generated for a Boolean 
network , let 
 D be the set of AND2/INV decompositions encoded in 

the resulting mapping graph.
  be the closure of  under the distributive 

transformation:

 Theorem:  = D

a

ab
b

cc
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Combined Decomposition and 
Technology Mapping

 Theorem: If 
1. * is an arbitrary Boolean network obtained 

from  by algebraic decomposition, and
2.  is an arbitrary AND2/INV decomposition of 

*
then    D

 The resulting mapping graph encodes all the 
AND2/INV decompositions of all algebraic 
decompositions of 
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Combined Decomposition and 
Technology Mapping

 -mapping captures all AND2/INV decompositions of : 
Phase 2 (subject graph generation) is subsumed

 -mapping captures all algebraic decompositions: 
Phase 2 and Phase 1 are subsumed

Phase 1:
arbitrary algebraic 

decomposition

Phase 2:
arbitrary AND2/INV

decomposition

Mapping graph
associative transform

Dynamic decomposition
distributive transform

 



*

D -mapping

L -mapping




 

**
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Combined Decomposition and 
Technology Mapping

 Summary
 Logic decomposition during technology mapping

Efficiently encode a set on AND2/INV decompositions
Dynamically perform logic decomposition

 Two mapping procedures
-mapping: optimal over all AND2/INV decompositions 

(associative rule)
-mapping: optimal over all algebraic decompositions 

(distributive rule)
 Was implemented and used for commercial design 

projects (in DEC/Compac alpha)
 Extended for sequential circuits:

considers all retiming possibilities (implicitly) and algebraic 
factors across latches


