
1

Logic Synthesis and
Verification

Jie-Hong Roland Jiang
江介宏

Department of Electrical Engineering
National Taiwan University

Fall 2012

2

Technology Mapping

Reading:
Logic Synthesis in a Nutshell

Section 4

most of the following slides are by
courtesy of Andreas Kuehlmann

3

Technology Independent Optimization

Example
t1 = a + bc
t2 = d + e
t3 = ab + d
t4 = t1t2 + fg
t5 = t4h + t2t3

F = t5’

d+ea+bc

t5’

t1t2 + fg

F

ab+d

t4h + t2t3

t1 t2 t3

t4

t5

An unoptimized set of logic equations consisting of 17 literals

4

Technology Independent Optimization

Example (cont’d)
t1 = d + e
t2 = b + h
t3 = at2 + c
t4 = t1t3 + fgh
F = t4’

An optimized set of logic equations consisting of 13 literals

d+e b+h

t4’

at2 +c

t1t3 + fgh

F

t1 t2

t3
t4

5

Technology Mapping

 Implement an optimized Boolean network using a
set of pre-designed and pre-characterized gates
from a library
 Each gate has a cost (e.g. area, delay, power, etc.)

library of primitive gates

6

Technology Mapping

 Two approaches:
1. Rule based: LSS
2. Algorithmic: DAGON

 Represent the netlist to be mapped in terms of a
selected set of base functions, e.g., {NAND2, INV}
 Base functions from a functionally complete set
 Such a netlist is called the subject graph

 Each gate in the library is likewise represented using
the base functions
 Represent each gate in all possible ways
 This generates pattern graphs

7

Algorithmic Technology Mapping

 A cover is a collection of pattern graphs such that
 every node of the subject graph is contained in one (or

more) pattern graphs
 each input required by a pattern graph is actually an

output of some other pattern graph (i.e. the inputs of
one gate must exist as outputs of other gates)

 For area minimization, the cost of the cover is the
sum of the areas of the gates in the cover

 Technology mapping problem:
Find a minimum cost covering of the subject
graph by choosing from the collection of pattern
graphs for all the gates in the library

8

Subject Graph

 Example
t1 = d + e
t2 = b + h
t3 = at2 + c
t4 = t1t3 + fgh
F = t4’ F

f

g

d

e

h

b

a

c

9

Pattern Graphs

 Example
 (IWLS library)

inv(1)

nand3 (3)

oai22 (4)

nor(2)
nor3 (3)

xor (5)

aoi21 (3)

nand2(2)

10

Subject Graph Covering (1)

 Example
t1 = d + e
t2 = b + h
t3 = at2 + c
t4 = t1t3 + fgh
F = t4’

F

f

g

d

e

h

b

a

c
Total cost = 23

11

Subject Graph Covering (2)

 Example
t1 = d + e
t2 = b + h
t3 = at2 + c
t4 = t1t3 + fgh
F = t4’

Total cost = 18

f

g

d

e

h

b

a

c

aoi22(4)

and2(3)

or2(3)

or2(3)

nand2(2)

nand2(2)

inv(1)

F

12

Subject Graph Covering (3)

 Example
t1 = d + e
t2 = b + h
t3 = at2 + c
t4 = t1t3 + fgh
F = t4’

Total cost = 15

F

f

g

d

e

h

b

a

c

nand3(3)

oai21(3)
oai21 (3)

and2(3)

inv(1)

nand2(2)

13

DAG Covering

 Input:
 Logic network after technology independent optimization
 A library of gates with their costs

Output:
 A netlist of gates (from library) which minimizes total

cost

 General Approach:
 Construct a subject DAG (directed acyclic graph) for the

network
 Represent each gate in the target library by pattern

DAG’s
 Find an optimal-cost covering of subject DAG using the

collection of pattern DAG’s

14

DAG Covering

Complexity

NP-hard

Remains NP-hard even when the nodes have

out-degree  2

 If subject DAG and pattern DAG’s are trees,

efficient algorithms exist

15

DAG Covering
Binate Covering Approach

 Compute all possible matches {mk } of pattern graphs for
each node in the subject graph

 Using a variable mi for each match of a pattern graph in
the subject graph, (mi =1 if match is chosen)

 Write a clause for each node of the subject graph indicating
which matches cover this node (each node has to be
covered)
 e.g., if a subject node is covered by matches {m2, m5,

m10 }, then the clause would be (m2 + m5 + m10)
 Repeat for each subject node

and take the product over all
subject nodes (CNF)

m1 m2 . . . mk

n1
n2
.
.
.
nl

nodes

16

DAG Covering
Binate Covering Approach

 Any satisfying assignment guarantees that all
subject nodes are covered, but does not
guarantee that other matches chosen create
outputs needed as inputs for a given match

 Resolve this problem by adding additional clauses

not an output
of a chosen
match

17

DAG Covering
Binate Covering Approach

 Let match mi have subject nodes vi1,…,vin as its n
inputs. If mi is chosen, one of the matches that
realizes vij must also be chosen for each input j
(if j not a primary input).

 Let Sij be the disjunctive expression in the
variables mk giving the possible matches which
realize vij as an output node. Selecting match mi
implies satisfying each of the expressions Sij for
j = 1 … n. This can be written

(mi  (Si1 … Sin))  (mi + (Si1 … Sin)) ((mi + Si1) … (mi + Sin))

18

DAG Covering
Binate Covering Approach

 Also, one of the matches for each primary output
of the circuit must be selected

 An assignment to variables mi that satisfies the
above covering expression is a legal graph cover

 For area optimization, each match mi has a cost
ci that is the area of the gate the match
represents

 The goal is a satisfying assignment with the least
total cost
 Find a least-cost prime:

if a variable mi = 0 its cost is 0, else its cost in ci

mi = 0 means that match i is not chosen

19

DAG Covering
Binate Covering Approach

Binate covering is more general than
unate covering
Unlike unate covering, variables are present in

both their true and complemented forms in the
covering expression

 The covering expression is a binate function,
and the problem is referred to as the binate-
covering problem

20

DAG Covering
Binate Covering Approach

 Example

1

2

3

4

5

6

7 8
9

a
b

c
d

o1

o2

g1,g2,g3,g5g5a,b,g43oai21m14

g4,g6,g7,g8,g9g9a,b,c,d4nand4m13

g1,g2,g3,g4,g5g5a,b5xnor2m12

g4,g6,g7g7a,b,c3nand3m11

g7,g8,g9g9g6,c,d3nand3m10

g9g9g8,d2nand2m9

g8g8g71invm8

g7g7g6,c2nand2m7

g6g6g41invm6

g5g5g3,g42nand2m5

g4g4a, b2nand2m4

g3g3g1,g22nand2m3

g2g2a1invm2

g1g1b1invm1

CoversRootInputsCostGateMatch

21

DAG Covering
Binate Covering Approach

 Example (cont’d)
 Generate constraints that each node gi be covered by

some match
(m1 + m12 + m14) (m2 + m12 + m14) (m3 + m12 + m14)
(m4 + m11 + m12 + m13) (m5 + m12 + m14)
(m6 + m11 + m13) (m7 + m10 + m11 + m13)
(m8 + m10 + m13) (m9 + m10 + m13)

 To ensure that a cover leads to a valid circuit, extra
clauses are generated
For example, selecting m3 requires that

 a match be chosen which produces g2 as an output, and
 a match be chosen which produces g1 as an output

 The only match which produces g1 is m1, and the only
match which produces g2 is m2

22

DAG Covering
Binate Covering Approach

Example (cont’d)
 The primary output nodes g5 and g9 must be

realized as an output of some match
The matches which realize g5 as an output are m5,

m12, m14

The matches which realize g9 as an output are m9,
m10, m13

Note:
A match which requires a primary input as an input is

satisfied trivially
Matches m1,m2,m4,m11,m12,m13 are driven only by

primary inputs and do not require additional clauses

23

DAG Covering
Binate Covering Approach

 Example (cont’d)
 Finally, we get

(m3 + m1) (m3 + m2) (m3 +m5) (m5 + m4) (m6 + m4)
(m7 + m6) (m8 + m7) (m8 +m9) (m10 + m6)
(m14 + m4) (m5 + m12 + m14) (m9 + m10 + m13)

 The covering expression has 58 implicants

 The least cost prime implicant is
m3 m5 m6 m7 m8 m9 m10 m12 m13 m14

 This uses two gates for a cost of 9 gate units. This corresponds
to a cover which selects matches m12 (xor2) and m13 (nand4).

24

DAG Covering
Binate Covering Approach

 Example (cont’d)

g1,g2,g3,g5g5a,b,g43oai21m14

g4,g6,g7,g8,g9g9a,b,c,d4nand4m13

g1,g2,g3,g4,g5g5a,b5xnor2m12

g4,g6,g7g7a,b,c3nand3m11

g7,g8,g9g9g6,c,d3nand3m10

g9g9g8,d2nand2m9

g8g8g71invm8

g7g7g6,c2nand2m7

g6g6g41invm6

g5g5g3,g42nand2m5

g4g4a, b2nand2m4

g3g3g1,g22nand2m3

g2g2a1invm2

g1g1b1invm1

CoversRootInputsCostGateMatch

1

2

3

4

5

6

7 8
9

a
b

c
d

o1

o2

m3m5m6m7m8m9m10 m12 m13m14

Note: g4 is covered by both matches

25

DAG Covering
Binate Covering Approach

 Complexity
 DAG-covering: covering + implication constraints
 More general than unate covering

Finding least cost prime of a binate function
 Even finding a feasible solution is NP-complete (SAT)
 For unate covering, finding a feasible solution is easy

 Given a subject graph, the binate covering provides the
exact solution to the technology-mapping problem
However, better results may be obtained with a different

initial decomposition into 2-input NANDs and inverters

 Methods to solve the binate covering formulation:
Branch and bound, BDD-based
Expensive even for moderate-size networks

26

Tree Covering

When the subject graph and pattern
graphs are trees, an efficient algorithm to
find the best cover exists

Solvable with dynamic programming

27

Tree Covering

1. Partition subject graph into forest of trees
2. Cover each tree optimally using dynamic

programming
 Given:

 Subject trees (networks to be mapped)
 Forest of patterns (gate library)

 For each node N of a subject tree
 Recursive Assumption: for all children of N, a best cost

match (which implements the node) is known
 Compute cost of each pattern tree which matches at N,

Cost = SUM of best costs of implementing each
input of pattern plus the cost of the pattern
 Cost of a leaf of the tree is 0

 Choose least cost matching pattern for implementing N

28

Tree Covering
 Algorithm OPTIMAL_AREA_COVER(node) {

foreach input of node {
OPTIMAL_AREA_COVER(input);//satisfies recur. assumption

}
// Using these, find the best cover at node
nodearea = INFINITY;
nodematch = 0;
foreach match at node {

area = matcharea;
foreach pin of match {

area = area + pinarea;
}
if (area < nodearea) {

nodearea = area;
nodematch = match;

}
}

}

29

Tree Covering

 Example

nand2(3)

inv(2)

nand2(8)
nand2(13)

inv(2)

nand2(3)
inv(5)

and2(4)

inv(6)
and2(8)

nand2(7)
nand3(4)

nand2(22)
nand3(21)
nand4(18)

inv(20)
aoi21(18)

nand2(21)
nand3(23)
nand4(22)nand4

aoi21

nand4

Library:
nand2 = 3
inv = 2
nand3 = 4
nand4 = 5
and2 = 4
aoi21 = 4
oai21 = 4

30

Tree Covering

Complexity
Complexity is controlled by finding all sub-

trees of the subject graph which are
isomorphic to a pattern tree

 Linear complexity in both size of subject tree
and size of collection of pattern trees

31

Tree Covering

 Partition subject DAG into trees
 Trivial partition: break the graph at all multiple-fanout

points
no duplication or overlap in the resulting trees
drawback - sometimes results in many small trees

Leads to
3 trees

32

Tree Covering

 Partition subject DAG into trees
 Single-cone partition: from a single output, form a large

tree back to the primary inputs
map successive outputs until they hit match output formed

from mapping previous primary outputs
 Duplicates some logic (where trees overlap)
 Produces much larger trees, potentially better area results

output

output

33

Min-Delay Technology Mapping
 For trees:

 identical to min-area covering
 use optimal delay values within the dynamic programming

paradigm

 For DAGs:
 if delay does not depend on number of fanouts:

use dynamic programming as presented for trees
 leads to optimal solution in polynomial time

 Assume logic replication is okay

 Combined objective
 e.g. apply delay as first criteria, then area as second
 combine with static timing analysis to focus on critical paths

34

Decomposition and Technology
Mapping

Common Approach:
 Phase 1: Technology independent optimization

commit to a particular Boolean network
algebraic decomposition used

 Phase 2: AND2/INV decomposition
commit to a particular decomposition of a general Boolean

network using 2-input ANDs and inverters
 Phase 3: Technology mapping (tree-mapping)

Drawbacks:
Procedures in each phase are disconnected:
 Phase 1 and Phase 2 make critical decisions without

knowing much about constraints and library
 Phase 3 knows about constraints and library, but

solution space is restricted by decisions made earlier

35

Combined Decomposition and
Technology Mapping

 Incorporate technology independent procedures
(Phase 1 and Phase 2) into technology mapping

 Lehman-Watanabe Algorithm:

 Key Idea:
 Efficiently encode a set of AND2/INV

decompositions into a single structure called a
mapping graph

Apply a modified tree-based technology
mapper while dynamically performing algebraic
logic decomposition on the mapping graph

36

Combined Decomposition and
Technology Mapping

Outline
Mapping Graph

Encodes a set of AND2/INV decompositions

 Tree-mapping on a mapping graph: graph-
mapping

-mapping:
without dynamic logic decomposition
solution space: Phase 3 + Phase 2

 -mapping:
with dynamic logic decomposition
solution space: Phase 3 + Phase 2 + Algebraic

decomposition (Phase 1)

37

Combined Decomposition and
Technology Mapping

AND2/INV decomposition
 E.g., f = abc can be represented in various

ways

f

a

b

c

a

b

c

a

b
c

f

f

38

Combined Decomposition and
Technology Mapping

Combine different AND2/INV
decompositions with a choice node

a

b

c

a
b

c

a

b
c



39

Combined Decomposition and
Technology Mapping

 The previous AND2/INV decompositions can be
represented more compactly as:

 This representation encodes even more
decompositions, e.g.,

a
b

c
a

b
c





f

b
c

a

40

Combined Decomposition and
Technology Mapping
 Mapping graph is a Boolean

network containing the following
four modifications:
 Choice node: choices on different

decompositions
 Cyclic: functions written in terms

of each other, e.g. inverter chain
with an arbitrary length

 Reduced: No two choice nodes
with same function. No two AND2s
with same fanin. (like BDD node
sharing)

 Ugates: just for efficient
implementation - do not explicitly
represent choice nodes and
inverters
 For CHT benchmark (MCNC’91), there are

2.2x1093 AND2/INV decompositions. All
are encoded with only 400 ugates
containing 599 AND2s in total.

b
c

a

a
b

c

ab

bc

ac

abc

ugates

41

Combined Decomposition and
Technology Mapping

 Graph-Mapping on Trees*:
Apply dynamic programming
from primary inputs:
 find matches at each AND2

and INV, and
 retain the cost of a best

cover at each node
 a match may contain choice nodes
 the cost at a choice node is the

minimum of fanin costs
 fixed-point iteration on each cycle,

until costs of all the nodes in the
cycle become stable

 Run-time is typically linear in the size of the mapping graph

* mapping graph may not be a tree, but any multiple fanout node just
represents several copies of same function.

b
c

a

b
c

a

ab

bc

ac

abc

AND3

42

Combined Decomposition and
Technology Mapping

 Example
 Graph mapping on trees for min delay

 best choice if c is later than a and b.

subject graph library pattern graph

43

Combined Decomposition and
Technology Mapping

 Graph mapping
Graph-mapping() = min { tree-mapping() }

: mapping graph
: AND2/INV decomposition encoded in 
 Graph-mapping finds an optimal tree implementation for

each primary output over all AND2/INV decompositions
encoded in 

 Graph-mapping is as powerful as applying tree-mapping
exhaustively, but is typically exponentially faster

44

Combined Decomposition and
Technology Mapping

 -mapping
Given a Boolean network ,
 Generate a mapping graph :
 For each node of ,

encode all AND2 decompositions for each product term
 E.g., abc  3 AND2 decompositions: a(bc), c(ab), b(ca)

encode all AND2/INV decompositions for the sum term
 E.g., p+q+r  3 AND2/INV decompositions:

p+(q+r), r+(p+q), q+(r+p)

In practice,  is preprocessed so each node has at most 10
product terms and each term has at most 10 literals

 Apply graph-mapping on 

45

Combined Decomposition and
Technology Mapping

 -mapping
For the mapping graph  generated for a Boolean network ,
let
 L be the set of AND2/INV decompositions encoded in 
  be the closure of the set of AND2/INV decompositions of 

under the associative and inverter transformations:

 Theorem:  = L

a
b

c

a
c

b

Associative
transform

Inverter
transform

46

Combined Decomposition and
Technology Mapping

Dynamic logic decomposition
During graph-mapping, dynamically modify the

mapping graph: find D-patterns and add F-
patterns

D-pattern: acab 

a

b ab

cc

F-pattern:)(cba 

47

Combined Decomposition and
Technology Mapping

 Dynamic logic decomposition

a
b

c

ab

c

b

c

a c

a

a
b
c

b

Note: Adding F-patterns may introduce new
D-patterns which may imply new F-patterns

48

Combined Decomposition and
Technology Mapping

 -mapping
Given a Boolean network ,
 Generate a mapping graph 
 Iteratively apply graph mapping on , while performing

dynamic logic decomposition until nothing changes in 
 Before finding matches at an AND2 in , check if D-pattern

matches at the AND2. If so, add the corresponding F-pattern
 In practice, terminate the procedure when a feasible solution is

found
b

c

a c

a

a
b
c

b

49

Combined Decomposition and
Technology Mapping

 -mapping
For the mapping graph  generated for a Boolean
network , let
 D be the set of AND2/INV decompositions encoded in

the resulting mapping graph.
  be the closure of  under the distributive

transformation:

 Theorem:  = D

a

ab
b

cc

50

Combined Decomposition and
Technology Mapping

 Theorem: If
1. * is an arbitrary Boolean network obtained

from  by algebraic decomposition, and
2.  is an arbitrary AND2/INV decomposition of

*
then   D

 The resulting mapping graph encodes all the
AND2/INV decompositions of all algebraic
decompositions of 

51

Combined Decomposition and
Technology Mapping

 -mapping captures all AND2/INV decompositions of :
Phase 2 (subject graph generation) is subsumed

 -mapping captures all algebraic decompositions:
Phase 2 and Phase 1 are subsumed

Phase 1:
arbitrary algebraic

decomposition

Phase 2:
arbitrary AND2/INV

decomposition

Mapping graph
associative transform

Dynamic decomposition
distributive transform

 



*

D -mapping

L -mapping




 

**

52

Combined Decomposition and
Technology Mapping

 Summary
 Logic decomposition during technology mapping

Efficiently encode a set on AND2/INV decompositions
Dynamically perform logic decomposition

 Two mapping procedures
-mapping: optimal over all AND2/INV decompositions

(associative rule)
-mapping: optimal over all algebraic decompositions

(distributive rule)
 Was implemented and used for commercial design

projects (in DEC/Compac alpha)
 Extended for sequential circuits:

considers all retiming possibilities (implicitly) and algebraic
factors across latches

