
1

Logic Synthesis and
Verification

Jie-Hong Roland Jiang
江介宏

Department of Electrical Engineering
National Taiwan University

Fall 2012

2

Technology Mapping

Reading:
Logic Synthesis in a Nutshell

Section 4

most of the following slides are by
courtesy of Andreas Kuehlmann

3

Technology Independent Optimization

Example
t1 = a + bc
t2 = d + e
t3 = ab + d
t4 = t1t2 + fg
t5 = t4h + t2t3

F = t5’

d+ea+bc

t5’

t1t2 + fg

F

ab+d

t4h + t2t3

t1 t2 t3

t4

t5

An unoptimized set of logic equations consisting of 17 literals

4

Technology Independent Optimization

Example (cont’d)
t1 = d + e
t2 = b + h
t3 = at2 + c
t4 = t1t3 + fgh
F = t4’

An optimized set of logic equations consisting of 13 literals

d+e b+h

t4’

at2 +c

t1t3 + fgh

F

t1 t2

t3
t4

5

Technology Mapping

 Implement an optimized Boolean network using a
set of pre-designed and pre-characterized gates
from a library
 Each gate has a cost (e.g. area, delay, power, etc.)

library of primitive gates

6

Technology Mapping

 Two approaches:
1. Rule based: LSS
2. Algorithmic: DAGON

 Represent the netlist to be mapped in terms of a
selected set of base functions, e.g., {NAND2, INV}
 Base functions from a functionally complete set
 Such a netlist is called the subject graph

 Each gate in the library is likewise represented using
the base functions
 Represent each gate in all possible ways
 This generates pattern graphs

7

Algorithmic Technology Mapping

 A cover is a collection of pattern graphs such that
 every node of the subject graph is contained in one (or

more) pattern graphs
 each input required by a pattern graph is actually an

output of some other pattern graph (i.e. the inputs of
one gate must exist as outputs of other gates)

 For area minimization, the cost of the cover is the
sum of the areas of the gates in the cover

 Technology mapping problem:
Find a minimum cost covering of the subject
graph by choosing from the collection of pattern
graphs for all the gates in the library

8

Subject Graph

 Example
t1 = d + e
t2 = b + h
t3 = at2 + c
t4 = t1t3 + fgh
F = t4’ F

f

g

d

e

h

b

a

c

9

Pattern Graphs

 Example
 (IWLS library)

inv(1)

nand3 (3)

oai22 (4)

nor(2)
nor3 (3)

xor (5)

aoi21 (3)

nand2(2)

10

Subject Graph Covering (1)

 Example
t1 = d + e
t2 = b + h
t3 = at2 + c
t4 = t1t3 + fgh
F = t4’

F

f

g

d

e

h

b

a

c
Total cost = 23

11

Subject Graph Covering (2)

 Example
t1 = d + e
t2 = b + h
t3 = at2 + c
t4 = t1t3 + fgh
F = t4’

Total cost = 18

f

g

d

e

h

b

a

c

aoi22(4)

and2(3)

or2(3)

or2(3)

nand2(2)

nand2(2)

inv(1)

F

12

Subject Graph Covering (3)

 Example
t1 = d + e
t2 = b + h
t3 = at2 + c
t4 = t1t3 + fgh
F = t4’

Total cost = 15

F

f

g

d

e

h

b

a

c

nand3(3)

oai21(3)
oai21 (3)

and2(3)

inv(1)

nand2(2)

13

DAG Covering

 Input:
 Logic network after technology independent optimization
 A library of gates with their costs

Output:
 A netlist of gates (from library) which minimizes total

cost

 General Approach:
 Construct a subject DAG (directed acyclic graph) for the

network
 Represent each gate in the target library by pattern

DAG’s
 Find an optimal-cost covering of subject DAG using the

collection of pattern DAG’s

14

DAG Covering

Complexity

NP-hard

Remains NP-hard even when the nodes have

out-degree 2

 If subject DAG and pattern DAG’s are trees,

efficient algorithms exist

15

DAG Covering
Binate Covering Approach

 Compute all possible matches {mk } of pattern graphs for
each node in the subject graph

 Using a variable mi for each match of a pattern graph in
the subject graph, (mi =1 if match is chosen)

 Write a clause for each node of the subject graph indicating
which matches cover this node (each node has to be
covered)
 e.g., if a subject node is covered by matches {m2, m5,

m10 }, then the clause would be (m2 + m5 + m10)
 Repeat for each subject node

and take the product over all
subject nodes (CNF)

m1 m2 . . . mk

n1
n2
.
.
.
nl

nodes

16

DAG Covering
Binate Covering Approach

 Any satisfying assignment guarantees that all
subject nodes are covered, but does not
guarantee that other matches chosen create
outputs needed as inputs for a given match

 Resolve this problem by adding additional clauses

not an output
of a chosen
match

17

DAG Covering
Binate Covering Approach

 Let match mi have subject nodes vi1,…,vin as its n
inputs. If mi is chosen, one of the matches that
realizes vij must also be chosen for each input j
(if j not a primary input).

 Let Sij be the disjunctive expression in the
variables mk giving the possible matches which
realize vij as an output node. Selecting match mi
implies satisfying each of the expressions Sij for
j = 1 … n. This can be written

(mi (Si1 … Sin)) (mi + (Si1 … Sin)) ((mi + Si1) … (mi + Sin))

18

DAG Covering
Binate Covering Approach

 Also, one of the matches for each primary output
of the circuit must be selected

 An assignment to variables mi that satisfies the
above covering expression is a legal graph cover

 For area optimization, each match mi has a cost
ci that is the area of the gate the match
represents

 The goal is a satisfying assignment with the least
total cost
 Find a least-cost prime:

if a variable mi = 0 its cost is 0, else its cost in ci

mi = 0 means that match i is not chosen

19

DAG Covering
Binate Covering Approach

Binate covering is more general than
unate covering
Unlike unate covering, variables are present in

both their true and complemented forms in the
covering expression

 The covering expression is a binate function,
and the problem is referred to as the binate-
covering problem

20

DAG Covering
Binate Covering Approach

 Example

1

2

3

4

5

6

7 8
9

a
b

c
d

o1

o2

g1,g2,g3,g5g5a,b,g43oai21m14

g4,g6,g7,g8,g9g9a,b,c,d4nand4m13

g1,g2,g3,g4,g5g5a,b5xnor2m12

g4,g6,g7g7a,b,c3nand3m11

g7,g8,g9g9g6,c,d3nand3m10

g9g9g8,d2nand2m9

g8g8g71invm8

g7g7g6,c2nand2m7

g6g6g41invm6

g5g5g3,g42nand2m5

g4g4a, b2nand2m4

g3g3g1,g22nand2m3

g2g2a1invm2

g1g1b1invm1

CoversRootInputsCostGateMatch

21

DAG Covering
Binate Covering Approach

 Example (cont’d)
 Generate constraints that each node gi be covered by

some match
(m1 + m12 + m14) (m2 + m12 + m14) (m3 + m12 + m14)
(m4 + m11 + m12 + m13) (m5 + m12 + m14)
(m6 + m11 + m13) (m7 + m10 + m11 + m13)
(m8 + m10 + m13) (m9 + m10 + m13)

 To ensure that a cover leads to a valid circuit, extra
clauses are generated
For example, selecting m3 requires that

 a match be chosen which produces g2 as an output, and
 a match be chosen which produces g1 as an output

 The only match which produces g1 is m1, and the only
match which produces g2 is m2

22

DAG Covering
Binate Covering Approach

Example (cont’d)
 The primary output nodes g5 and g9 must be

realized as an output of some match
The matches which realize g5 as an output are m5,

m12, m14

The matches which realize g9 as an output are m9,
m10, m13

Note:
A match which requires a primary input as an input is

satisfied trivially
Matches m1,m2,m4,m11,m12,m13 are driven only by

primary inputs and do not require additional clauses

23

DAG Covering
Binate Covering Approach

 Example (cont’d)
 Finally, we get

(m3 + m1) (m3 + m2) (m3 +m5) (m5 + m4) (m6 + m4)
(m7 + m6) (m8 + m7) (m8 +m9) (m10 + m6)
(m14 + m4) (m5 + m12 + m14) (m9 + m10 + m13)

 The covering expression has 58 implicants

 The least cost prime implicant is
m3 m5 m6 m7 m8 m9 m10 m12 m13 m14

 This uses two gates for a cost of 9 gate units. This corresponds
to a cover which selects matches m12 (xor2) and m13 (nand4).

24

DAG Covering
Binate Covering Approach

 Example (cont’d)

g1,g2,g3,g5g5a,b,g43oai21m14

g4,g6,g7,g8,g9g9a,b,c,d4nand4m13

g1,g2,g3,g4,g5g5a,b5xnor2m12

g4,g6,g7g7a,b,c3nand3m11

g7,g8,g9g9g6,c,d3nand3m10

g9g9g8,d2nand2m9

g8g8g71invm8

g7g7g6,c2nand2m7

g6g6g41invm6

g5g5g3,g42nand2m5

g4g4a, b2nand2m4

g3g3g1,g22nand2m3

g2g2a1invm2

g1g1b1invm1

CoversRootInputsCostGateMatch

1

2

3

4

5

6

7 8
9

a
b

c
d

o1

o2

m3m5m6m7m8m9m10 m12 m13m14

Note: g4 is covered by both matches

25

DAG Covering
Binate Covering Approach

 Complexity
 DAG-covering: covering + implication constraints
 More general than unate covering

Finding least cost prime of a binate function
 Even finding a feasible solution is NP-complete (SAT)
 For unate covering, finding a feasible solution is easy

 Given a subject graph, the binate covering provides the
exact solution to the technology-mapping problem
However, better results may be obtained with a different

initial decomposition into 2-input NANDs and inverters

 Methods to solve the binate covering formulation:
Branch and bound, BDD-based
Expensive even for moderate-size networks

26

Tree Covering

When the subject graph and pattern
graphs are trees, an efficient algorithm to
find the best cover exists

Solvable with dynamic programming

27

Tree Covering

1. Partition subject graph into forest of trees
2. Cover each tree optimally using dynamic

programming
 Given:

 Subject trees (networks to be mapped)
 Forest of patterns (gate library)

 For each node N of a subject tree
 Recursive Assumption: for all children of N, a best cost

match (which implements the node) is known
 Compute cost of each pattern tree which matches at N,

Cost = SUM of best costs of implementing each
input of pattern plus the cost of the pattern
 Cost of a leaf of the tree is 0

 Choose least cost matching pattern for implementing N

28

Tree Covering
 Algorithm OPTIMAL_AREA_COVER(node) {

foreach input of node {
OPTIMAL_AREA_COVER(input);//satisfies recur. assumption

}
// Using these, find the best cover at node
nodearea = INFINITY;
nodematch = 0;
foreach match at node {

area = matcharea;
foreach pin of match {

area = area + pinarea;
}
if (area < nodearea) {

nodearea = area;
nodematch = match;

}
}

}

29

Tree Covering

 Example

nand2(3)

inv(2)

nand2(8)
nand2(13)

inv(2)

nand2(3)
inv(5)

and2(4)

inv(6)
and2(8)

nand2(7)
nand3(4)

nand2(22)
nand3(21)
nand4(18)

inv(20)
aoi21(18)

nand2(21)
nand3(23)
nand4(22)nand4

aoi21

nand4

Library:
nand2 = 3
inv = 2
nand3 = 4
nand4 = 5
and2 = 4
aoi21 = 4
oai21 = 4

30

Tree Covering

Complexity
Complexity is controlled by finding all sub-

trees of the subject graph which are
isomorphic to a pattern tree

 Linear complexity in both size of subject tree
and size of collection of pattern trees

31

Tree Covering

 Partition subject DAG into trees
 Trivial partition: break the graph at all multiple-fanout

points
no duplication or overlap in the resulting trees
drawback - sometimes results in many small trees

Leads to
3 trees

32

Tree Covering

 Partition subject DAG into trees
 Single-cone partition: from a single output, form a large

tree back to the primary inputs
map successive outputs until they hit match output formed

from mapping previous primary outputs
 Duplicates some logic (where trees overlap)
 Produces much larger trees, potentially better area results

output

output

33

Min-Delay Technology Mapping
 For trees:

 identical to min-area covering
 use optimal delay values within the dynamic programming

paradigm

 For DAGs:
 if delay does not depend on number of fanouts:

use dynamic programming as presented for trees
 leads to optimal solution in polynomial time

 Assume logic replication is okay

 Combined objective
 e.g. apply delay as first criteria, then area as second
 combine with static timing analysis to focus on critical paths

34

Decomposition and Technology
Mapping

Common Approach:
 Phase 1: Technology independent optimization

commit to a particular Boolean network
algebraic decomposition used

 Phase 2: AND2/INV decomposition
commit to a particular decomposition of a general Boolean

network using 2-input ANDs and inverters
 Phase 3: Technology mapping (tree-mapping)

Drawbacks:
Procedures in each phase are disconnected:
 Phase 1 and Phase 2 make critical decisions without

knowing much about constraints and library
 Phase 3 knows about constraints and library, but

solution space is restricted by decisions made earlier

35

Combined Decomposition and
Technology Mapping

 Incorporate technology independent procedures
(Phase 1 and Phase 2) into technology mapping

 Lehman-Watanabe Algorithm:

 Key Idea:
 Efficiently encode a set of AND2/INV

decompositions into a single structure called a
mapping graph

Apply a modified tree-based technology
mapper while dynamically performing algebraic
logic decomposition on the mapping graph

36

Combined Decomposition and
Technology Mapping

Outline
Mapping Graph

Encodes a set of AND2/INV decompositions

 Tree-mapping on a mapping graph: graph-
mapping

-mapping:
without dynamic logic decomposition
solution space: Phase 3 + Phase 2

 -mapping:
with dynamic logic decomposition
solution space: Phase 3 + Phase 2 + Algebraic

decomposition (Phase 1)

37

Combined Decomposition and
Technology Mapping

AND2/INV decomposition
 E.g., f = abc can be represented in various

ways

f

a

b

c

a

b

c

a

b
c

f

f

38

Combined Decomposition and
Technology Mapping

Combine different AND2/INV
decompositions with a choice node

a

b

c

a
b

c

a

b
c

39

Combined Decomposition and
Technology Mapping

 The previous AND2/INV decompositions can be
represented more compactly as:

 This representation encodes even more
decompositions, e.g.,

a
b

c
a

b
c

f

b
c

a

40

Combined Decomposition and
Technology Mapping
 Mapping graph is a Boolean

network containing the following
four modifications:
 Choice node: choices on different

decompositions
 Cyclic: functions written in terms

of each other, e.g. inverter chain
with an arbitrary length

 Reduced: No two choice nodes
with same function. No two AND2s
with same fanin. (like BDD node
sharing)

 Ugates: just for efficient
implementation - do not explicitly
represent choice nodes and
inverters
 For CHT benchmark (MCNC’91), there are

2.2x1093 AND2/INV decompositions. All
are encoded with only 400 ugates
containing 599 AND2s in total.

b
c

a

a
b

c

ab

bc

ac

abc

ugates

41

Combined Decomposition and
Technology Mapping

 Graph-Mapping on Trees*:
Apply dynamic programming
from primary inputs:
 find matches at each AND2

and INV, and
 retain the cost of a best

cover at each node
 a match may contain choice nodes
 the cost at a choice node is the

minimum of fanin costs
 fixed-point iteration on each cycle,

until costs of all the nodes in the
cycle become stable

 Run-time is typically linear in the size of the mapping graph

* mapping graph may not be a tree, but any multiple fanout node just
represents several copies of same function.

b
c

a

b
c

a

ab

bc

ac

abc

AND3

42

Combined Decomposition and
Technology Mapping

 Example
 Graph mapping on trees for min delay

 best choice if c is later than a and b.

subject graph library pattern graph

43

Combined Decomposition and
Technology Mapping

 Graph mapping
Graph-mapping() = min { tree-mapping() }

: mapping graph
: AND2/INV decomposition encoded in
 Graph-mapping finds an optimal tree implementation for

each primary output over all AND2/INV decompositions
encoded in

 Graph-mapping is as powerful as applying tree-mapping
exhaustively, but is typically exponentially faster

44

Combined Decomposition and
Technology Mapping

 -mapping
Given a Boolean network ,
 Generate a mapping graph :
 For each node of ,

encode all AND2 decompositions for each product term
 E.g., abc 3 AND2 decompositions: a(bc), c(ab), b(ca)

encode all AND2/INV decompositions for the sum term
 E.g., p+q+r 3 AND2/INV decompositions:

p+(q+r), r+(p+q), q+(r+p)

In practice, is preprocessed so each node has at most 10
product terms and each term has at most 10 literals

 Apply graph-mapping on

45

Combined Decomposition and
Technology Mapping

 -mapping
For the mapping graph generated for a Boolean network ,
let
 L be the set of AND2/INV decompositions encoded in
 be the closure of the set of AND2/INV decompositions of

under the associative and inverter transformations:

 Theorem: = L

a
b

c

a
c

b

Associative
transform

Inverter
transform

46

Combined Decomposition and
Technology Mapping

Dynamic logic decomposition
During graph-mapping, dynamically modify the

mapping graph: find D-patterns and add F-
patterns

D-pattern: acab

a

b ab

cc

F-pattern:)(cba

47

Combined Decomposition and
Technology Mapping

 Dynamic logic decomposition

a
b

c

ab

c

b

c

a c

a

a
b
c

b

Note: Adding F-patterns may introduce new
D-patterns which may imply new F-patterns

48

Combined Decomposition and
Technology Mapping

 -mapping
Given a Boolean network ,
 Generate a mapping graph
 Iteratively apply graph mapping on , while performing

dynamic logic decomposition until nothing changes in
 Before finding matches at an AND2 in , check if D-pattern

matches at the AND2. If so, add the corresponding F-pattern
 In practice, terminate the procedure when a feasible solution is

found
b

c

a c

a

a
b
c

b

49

Combined Decomposition and
Technology Mapping

 -mapping
For the mapping graph generated for a Boolean
network , let
 D be the set of AND2/INV decompositions encoded in

the resulting mapping graph.
 be the closure of under the distributive

transformation:

 Theorem: = D

a

ab
b

cc

50

Combined Decomposition and
Technology Mapping

 Theorem: If
1. * is an arbitrary Boolean network obtained

from by algebraic decomposition, and
2. is an arbitrary AND2/INV decomposition of

*
then D

 The resulting mapping graph encodes all the
AND2/INV decompositions of all algebraic
decompositions of

51

Combined Decomposition and
Technology Mapping

 -mapping captures all AND2/INV decompositions of :
Phase 2 (subject graph generation) is subsumed

 -mapping captures all algebraic decompositions:
Phase 2 and Phase 1 are subsumed

Phase 1:
arbitrary algebraic

decomposition

Phase 2:
arbitrary AND2/INV

decomposition

Mapping graph
associative transform

Dynamic decomposition
distributive transform

*

D -mapping

L -mapping

**

52

Combined Decomposition and
Technology Mapping

 Summary
 Logic decomposition during technology mapping

Efficiently encode a set on AND2/INV decompositions
Dynamically perform logic decomposition

 Two mapping procedures
-mapping: optimal over all AND2/INV decompositions

(associative rule)
-mapping: optimal over all algebraic decompositions

(distributive rule)
 Was implemented and used for commercial design

projects (in DEC/Compac alpha)
 Extended for sequential circuits:

considers all retiming possibilities (implicitly) and algebraic
factors across latches

