Logic Synthesis and Verification

Jie-Hong Roland Jiang 江介宏

Department of Electrical Engineering National Taiwan University

Fall 2012

Technology Mapping

Reading:

Logic Synthesis in a Nutshell

Section 4

most of the following slides are by courtesy of Andreas Kuehlmann

2

Technology Independent Optimization

Example

$$t_1 = a + bc$$

 $t_2 = d + e$
 $t_3 = ab + d$
 $t_4 = t_1t_2 + fg$
 $t_5 = t_4h + t_2t_3$
 $t_4 = t_5$
 $t_5 = t_4h + t_2t_3$
 $t_6 = t_5$

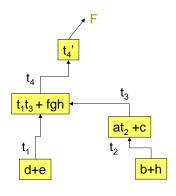
An unoptimized set of logic equations consisting of 17 literals

Technology Independent Optimization

■Example (cont'd)

$$t_1 = d + e$$

 $t_2 = b + h$
 $t_3 = at_2 + c$
 $t_4 = t_1t_3 + fgh$
 $F = t_4'$



An optimized set of logic equations consisting of 13 literals

Technology Mapping

- □ Implement an optimized Boolean network using a set of pre-designed and pre-characterized gates from a *library*
 - Each gate has a cost (e.g. area, delay, power, etc.)

library of primitive gates

Technology Mapping

■ Two approaches:

1. Rule based: LSS

2. Algorithmic: DAGON

- Represent the netlist to be mapped in terms of a selected set of base functions, e.g., {NAND2, INV}
 - Base functions from a functionally complete set
 - Such a netlist is called the subject graph
- Each gate in the library is likewise represented using the base functions
 - Represent each gate in all possible ways
 - This generates pattern graphs

Algorithmic Technology Mapping

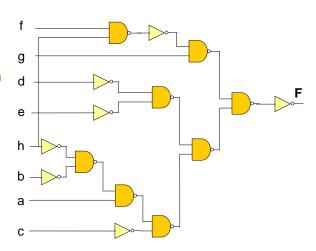
- □ A *cover* is a collection of pattern graphs such that
 - every node of the subject graph is contained in one (or more) pattern graphs
 - each input required by a pattern graph is actually an output of some other pattern graph (i.e. the inputs of one gate must exist as outputs of other gates)
- ☐ For area minimization, the cost of the cover is the sum of the areas of the gates in the cover
- □ Technology mapping problem: Find a minimum cost covering of the subject graph by choosing from the collection of pattern graphs for all the gates in the library

Subject Graph

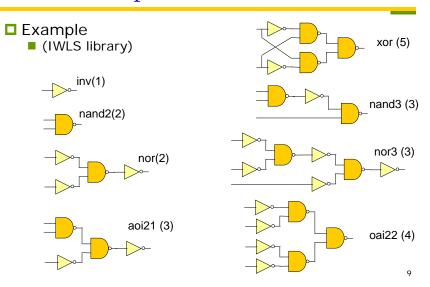
Example

$$t_1 = d + e$$

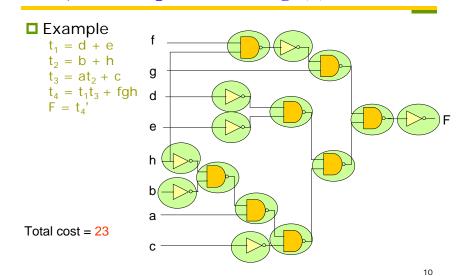
 $t_2 = b + h$
 $t_3 = at_2 + c$
 $t_4 = t_1t_3 + fgh$
 $F = t_4$



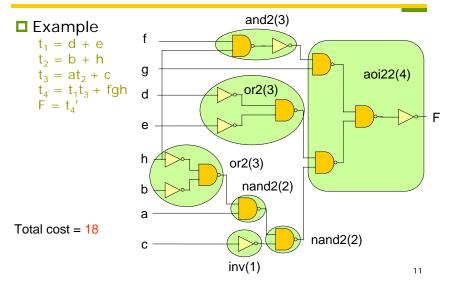
Pattern Graphs



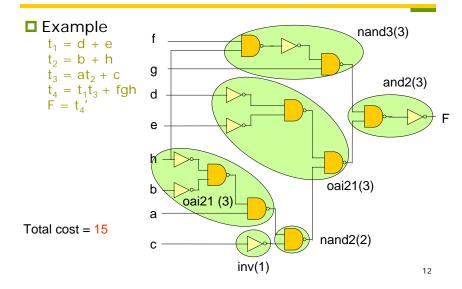
Subject Graph Covering (1)



Subject Graph Covering (2)



Subject Graph Covering (3)



DAG Covering

- □ Input:
 - Logic network after technology independent optimization
 - A library of gates with their costs
- Output:
 - A netlist of gates (from library) which minimizes total cost
- ☐ General Approach:
 - Construct a subject DAG (directed acyclic graph) for the network
 - Represent each gate in the target library by pattern DAG's
 - Find an optimal-cost covering of subject DAG using the collection of pattern DAG's

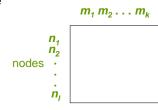
DAG Covering

- Complexity
 - NP-hard
 - Remains NP-hard even when the nodes have out-degree ≤ 2
 - If subject DAG and pattern DAG's are trees, efficient algorithms exist

14

DAG Covering Binate Covering Approach

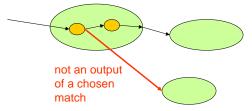
- $lue{}$ Compute all possible matches $\{m_k\}$ of pattern graphs for each node in the subject graph
- Using a variable m_i for each match of a pattern graph in the subject graph, $(m_i = 1 \text{ if match is chosen})$
- Write a clause for each node of the subject graph indicating which matches cover this node (each node has to be covered)
 - e.g., if a subject node is covered by matches $\{m_2, m_5, m_{10}\}$, then the clause would be $(m_2 + m_5 + m_{10})$
- Repeat for each subject node and take the product over all subject nodes (CNF)



13

DAG Covering Binate Covering Approach

□ Any satisfying assignment guarantees that all subject nodes are covered, but does not guarantee that other matches chosen create outputs needed as inputs for a given match



□ Resolve this problem by adding additional clauses

DAG Covering Binate Covering Approach

- \square Let match m_i have subject nodes $v_{i1},...,v_{in}$ as its ninputs. If m_i is chosen, one of the matches that realizes V_{ii} must also be chosen for each input j (if *j* not a primary input).
- \square Let S_{ii} be the disjunctive expression in the variables m_{ν} giving the possible matches which realize v_{ii} as an output node. Selecting match m_i implies satisfying each of the expressions S_{ii} for $j = 1 \dots n$. This can be written

$$(\mathsf{m}_{\mathsf{i}} \Rightarrow (\mathcal{S}_{\mathsf{i}\mathsf{i}} ... \mathcal{S}_{\mathsf{i}\mathsf{n}})) \Leftrightarrow (\stackrel{-}{\mathsf{m}}_{\mathsf{i}} + (\mathcal{S}_{\mathsf{i}\mathsf{i}} ... \mathcal{S}_{\mathsf{i}\mathsf{n}})) \Leftrightarrow ((\stackrel{-}{\mathsf{m}}_{\mathsf{i}} + \mathcal{S}_{\mathsf{i}\mathsf{i}}) ... (\stackrel{-}{\mathsf{m}}_{\mathsf{i}} + \mathcal{S}_{\mathsf{i}\mathsf{n}}))$$

17

19

DAG Covering Binate Covering Approach

- □ Also, one of the matches for each primary output of the circuit must be selected
- \square An assignment to variables m_i that satisfies the above covering expression is a legal graph cover
- \square For area optimization, each match m_i has a cost c, that is the area of the gate the match represents
- The goal is a satisfying assignment with the least total cost
 - Find a least-cost prime:
 - \square if a variable $m_i = 0$ its cost is 0, else its cost in c_i
 - $\square m_i = 0$ means that match i is not chosen

DAG Covering Binate Covering Approach

☐ Binate covering is more general than unate covering

- Unlike unate covering, variables are present in both their true and complemented forms in the covering expression
- The covering expression is a binate function, and the problem is referred to as the binatecovering problem

DAG Covering Binate Covering Approach

Example

Match	Gate	Cost	Inputs	Root	Covers
m ₁	inv	1	b	g ₁	g ₁
m ₂	inv	1	а	g ₂	g_2
m ₃	nand2	2	g ₁ ,g ₂	g ₃	g ₃
m ₄	nand2	2	a, b	g ₄	g ₄
m ₅	nand2	2	g ₃ ,g ₄	g ₅	g ₅
m ₆	inv	1	g ₄	g ₆	g ₆
m ₇	nand2	2	g ₆ ,c	g ₇	g ₇
m ₈	inv	1	g ₇	g ₈	g ₈
m ₉	nand2	2	g ₈ ,d	g ₉	g ₉
m ₁₀	nand3	3	g ₆ ,c,d	g ₉	g ₇ ,g ₈ ,g ₉
m ₁₁	nand3	3	a,b,c	g ₇	g ₄ ,g ₆ ,g ₇
m ₁₂	xnor2	5	a,b	g ₅	91,92,93,94,95
m ₁₃	nand4	4	a,b,c,d	g ₉	94,96,97,98,99
m ₁₄	oai21	3	a,b,g ₄	g ₅	g ₁ ,g ₂ ,g ₃ ,g ₅

DAG Covering Binate Covering Approach

■ Example (cont'd)

■ Generate constraints that each node q_i be covered by some match

```
(m_1 + m_{12} + m_{14}) (m_2 + m_{12} + m_{14}) (m_3 + m_{12} + m_{14})
(m_4 + m_{11} + m_{12} + m_{13}) (m_5 + m_{12} + m_{14})
(m_6 + m_{11} + m_{13}) (m_7 + m_{10} + m_{11} + m_{13})
(m_8 + m_{10} + m_{13}) (m_9 + m_{10} + m_{13})
```

- To ensure that a cover leads to a valid circuit, extra clauses are generated
 - \square For example, selecting m_2 requires that
 - a match be chosen which produces q₂ as an output, and
 - a match be chosen which produces g_1 as an output
- The only match which produces q_1 is m_{11} and the only match which produces q_2 is m_2

DAG Covering Binate Covering Approach

■Example (cont'd)

- The primary output nodes q_5 and q_6 must be realized as an output of some match
 - The matches which realize g_5 as an output are m_{50} m_{12}, m_{14}
 - The matches which realize g_o as an output are m_{o_o}

■ Note:

- □A match which requires a primary input as an input is satisfied trivially
- \square Matches $m_1, m_2, m_4, m_{11}, m_{12}, m_{13}$ are driven only by primary inputs and do not require additional clauses

22

DAG Covering Binate Covering Approach

- Example (cont'd)
 - Finally, we get

$$(\underline{m}_3 + m_1)$$
 $(\underline{m}_3 + m_2)$ $(m_3 + \underline{m}_5)$ $(\underline{m}_5 + m_4)$ $(\underline{m}_6 + m_4)$ $(\underline{m}_7 + m_6)$ $(\underline{m}_8 + m_7)$ $(m_8 + m_9)$ $(\underline{m}_{10} + m_6)$ $(\underline{m}_{14} + m_4)$ $(m_5 + m_{12} + m_{14})$ $(m_9 + m_{10} + m_{13})$

- The covering expression has 58 implicants
- The least cost prime implicant is m_3 m_5 m_6 m_7 m_8 m_9 m_{10} m_{12} m_{13} m_{14}
- This uses two gates for a cost of 9 gate units. This corresponds to a cover which selects matches m_{12} (xor2) and m_{13} (nand4).

DAG Covering Binate Covering Approach

■ Example (cont'd)

Example (cont'd)		Gate	Cost	iliputs	Root	Covers
= Example (cont d)	m ₁	inv	1	b	g ₁	g ₁
	m ₂	inv	1	а	g ₂	g_2
	m ₃	nand2	2	g ₁ ,g ₂	g ₃	g ₃
	m ₄	nand2	2	a, b	g ₄	g ₄
	m ₅	nand2	2	g ₃ ,g ₄	g ₅	g ₅
	m ₆	inv	1	g ₄	g ₆	g ₆
	m ₇	nand2	2	g ₆ ,c	g ₇	g ₇
$m_3 m_5 m_6 m_7 m_8 m_9 m_{10} m_{12} m_{13} m_{14}$	m ₈	inv	1	g ₇	g ₈	g ₈
	m ₉	nand2	2	g ₈ ,d	g ₉	g ₉
100	m ₁₀	nand3	3	g ₆ ,c,d	g ₉	97,98,99
3 0 01	m ₁₁	nand3	3	a,b,c	g ₇	94,96,97
5 0 01	m ₁₂	xnor2	5	a,b	g ₅	91,92,93,94,95
	m ₁₃	nand4	4	a,b,c,d	g ₉	94,96,97,98,99
a	m ₁₄	oai21	3	a,b,g ₄	g ₅	g ₁ ,g ₂ ,g ₃ ,g ₅
a 1 6 0						

Match Gate Cost Inputs Root Cove

Note: g₄ is covered by both matches

DAG Covering Binate Covering Approach

- Complexity
 - DAG-covering: covering + implication constraints
 - More general than unate covering
 - ☐ Finding least cost prime of a *binate* function
 - Even finding a feasible solution is NP-complete (SAT)
 - For unate covering, finding a feasible solution is easy
 - Given a subject graph, the binate covering provides the exact solution to the technology-mapping problem
 - □ However, better results may be obtained with a different initial decomposition into 2-input NANDs and inverters
 - Methods to solve the binate covering formulation:
 - Branch and bound, BDD-based
 - Expensive even for moderate-size networks

Tree Covering

- ■When the subject graph and pattern graphs are trees, an efficient algorithm to find the best cover exists
- Solvable with dynamic programming

26

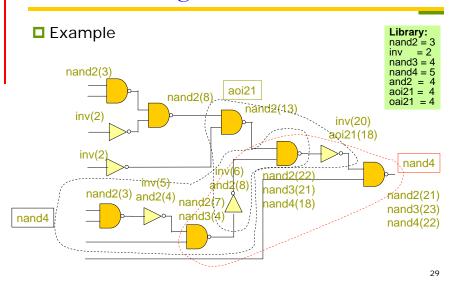
Tree Covering

- 1. Partition subject graph into forest of trees
- 2. Cover each tree optimally using dynamic programming
 - Given:
 - Subject trees (networks to be mapped)
 - □ Forest of patterns (gate library)
 - For each node N of a subject tree
 - Recursive Assumption: for all children of *N*, a best cost match (which implements the node) is known
 - Compute cost of each pattern tree which matches at N,
 Cost = SUM of best costs of implementing each
 input of pattern plus the cost of the pattern
 - Cost of a leaf of the tree is 0
 - □ Choose least cost matching pattern for implementing N

Tree Covering

```
■ Algorithm OPTIMAL_AREA_COVER(node) {
    foreach input of node {
        OPTIMAL_AREA_COVER(input);//satisfies recur. assumption
    }
    // Using these, find the best cover at node
    node→area = INFINITY;
    node→match = 0;
    foreach match at node {
        area = match→area;
        foreach pin of match {
            area = area + pin→area;
        }
        if (area < node→area) {
            node→area = area;
            node→match = match;
        }
    }
}</pre>
```

Tree Covering



Tree Covering

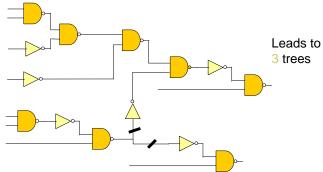
Complexity

- Complexity is controlled by finding all subtrees of the subject graph which are isomorphic to a pattern tree
- Linear complexity in both size of subject tree and size of collection of pattern trees

30

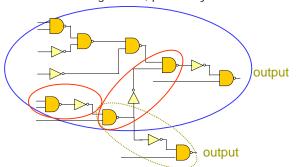
Tree Covering

- Partition subject DAG into trees
 - Trivial partition: break the graph at all multiple-fanout points
 - no duplication or overlap in the resulting trees
 - □ drawback sometimes results in many small trees



Tree Covering

- □ Partition subject DAG into trees
 - Single-cone partition: from a single output, form a large tree back to the primary inputs
 - map successive outputs until they hit match output formed from mapping previous primary outputs
 - Duplicates some logic (where trees overlap)
 - Produces much larger trees, potentially better area results



Min-Delay Technology Mapping

- For trees:
 - identical to min-area covering
 - use optimal delay values within the dynamic programming paradigm
- For DAGs:
 - if delay does not depend on number of fanouts: use dynamic programming as presented for trees
 - leads to optimal solution in polynomial time
 Assume logic replication is okay
- Combined objective
 - e.g. apply delay as first criteria, then area as second
 - combine with static timing analysis to focus on critical paths

Decomposition and Technology Mapping

Common Approach:

- Phase 1: Technology independent optimization
 □ commit to a particular Boolean network
 □ algebraic decomposition used
- Phase 2: AND2/INV decomposition
 commit to a particular decomposition of a general Boolean network using 2-input ANDs and inverters
- Phase 3: Technology mapping (tree-mapping)

Drawbacks:

Procedures in each phase are disconnected:

- Phase 1 and Phase 2 make critical decisions without knowing much about constraints and library
- Phase 3 knows about constraints and library, but solution space is restricted by decisions made earlier

Combined Decomposition and Technology Mapping

- ☐ Incorporate technology independent procedures (Phase 1 and Phase 2) into technology mapping
- □ Lehman-Watanabe Algorithm:
- Key Idea:
 - Efficiently encode a set of AND2/INV decompositions into a single structure called a mapping graph
 - Apply a modified tree-based technology mapper while dynamically performing algebraic logic decomposition on the mapping graph

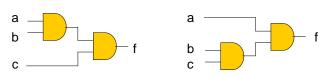
Combined Decomposition and Technology Mapping

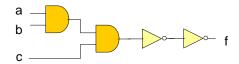
- Outline
 - Mapping Graph
 ■Encodes a set of AND2/INV decompositions
 - Tree-mapping on a mapping graph: graphmapping
 - **Λ**-mapping:
 - □without dynamic logic decomposition □solution space: Phase 3 + Phase 2
 - $\blacksquare \Delta$ -mapping:
 - with dynamic logic decomposition
 - □solution space: Phase 3 + Phase 2 + Algebraic decomposition (Phase 1)

34

Combined Decomposition and Technology Mapping

- □AND2/INV decomposition
 - E.g., f = abc can be represented in various ways



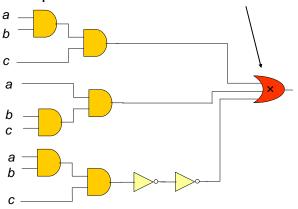


37

39

Combined Decomposition and Technology Mapping

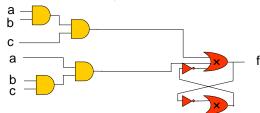
□ Combine different AND2/INV decompositions with a choice node



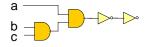
38

Combined Decomposition and Technology Mapping

■ The previous AND2/INV decompositions can be represented more compactly as:

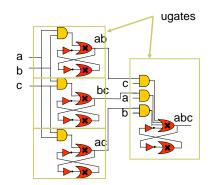


■ This representation encodes even more decompositions, e.g.,



Combined Decomposition and Technology Mapping

- Mapping graph is a Boolean network containing the following four modifications:
 - Choice node: choices on different decompositions
 - Cyclic: functions written in terms of each other, e.g. inverter chain with an arbitrary length
 - Reduced: No two choice nodes with same function. No two AND2s with same fanin. (like BDD node sharing)
 - Ugates: just for efficient implementation - do not explicitly represent choice nodes and inverters
 - For CHT benchmark (MCNC'91), there are 2.2x10⁹³ AND2/INV decompositions. All are encoded with only 400 ugates containing 599 AND2s in total.



Combined Decomposition and Technology Mapping

■ Graph-Mapping on Trees*:

Apply dynamic programming from primary inputs:

- find matches at each AND2 and INV, and
- retain the cost of a best cover at each node
 - a match may contain choice nodes
 - the cost at a choice node is the minimum of fanin costs
- fixed-point iteration on each cycle, until costs of all the nodes in the cycle become stable



mapping graph may not be a tree, but any multiple fanout node just represents several copies of same function.

41

AND3

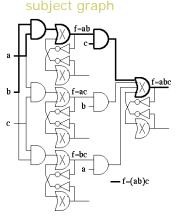
Combined Decomposition and Technology Mapping

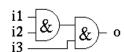
Example

Graph mapping on trees for min delay

□ best choice if c is later than a and b.

library pattern graph





42

Combined Decomposition and Technology Mapping

■ Graph mapping

Graph-mapping(μ) = $\min_{\theta \in \Pi}$ { tree-mapping(θ) }

- μ: mapping graph
- θ: AND2/INV decomposition encoded in μ
- Graph-mapping finds an optimal tree implementation for each primary output over all AND2/INV decompositions encoded in μ
- Graph-mapping is as powerful as applying tree-mapping exhaustively, but is typically exponentially faster

Combined Decomposition and Technology Mapping

Λ-mapping

Given a Boolean network n,

- Generate a mapping graph μ:
- For each node of n.
 - □ encode all AND2 decompositions for each product term
 - E.g., $abc \Rightarrow 3$ AND2 decompositions: a(bc), c(ab), b(ca)
 - □ encode all AND2/INV decompositions for the sum term
 - E.g., $p+q+r \Rightarrow 3$ AND2/INV decompositions:

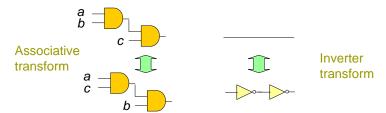
- \square In practice, η is preprocessed so each node has at most 10 product terms and each term has at most 10 literals
- Apply graph-mapping on µ

Combined Decomposition and Technology Mapping

□ Λ-mapping

For the mapping graph μ generated for a Boolean network η ,

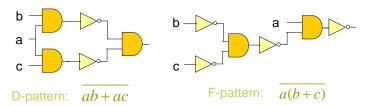
- be the set of AND2/INV decompositions encoded in μ
- be the closure of the set of AND2/INV decompositions of η under the associative and inverter transformations:



□ Theorem: $\Lambda \eta = L \eta$

Combined Decomposition and Technology Mapping

- ■Dynamic logic decomposition
 - During graph-mapping, dynamically modify the mapping graph: find D-patterns and add Fpatterns



Combined Decomposition and Technology Mapping

■ Dynamic logic decomposition

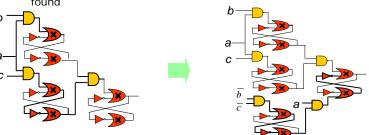


Combined Decomposition and Technology Mapping

□ ∆-mapping

Given a Boolean network n.

- Generate a mapping graph μ
- Iteratively apply graph mapping on μ, while performing dynamic logic decomposition until nothing changes in µ
 - Before finding matches at an AND2 in μ, check if D-pattern matches at the AND2. If so, add the corresponding F-pattern
 - ☐ In practice, terminate the procedure when a feasible solution is found

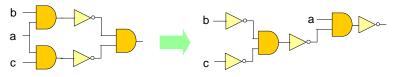


Combined Decomposition and Technology Mapping

□ ∆-mapping

For the mapping graph μ generated for a Boolean network η_{ℓ} let

- D_η be the set of AND2/INV decompositions encoded in the resulting mapping graph.



□ Theorem: $\Delta_n = D_n$

Combined Decomposition and Technology Mapping

■ Theorem: If

- 1. η^* is an arbitrary Boolean network obtained from η by algebraic decomposition, and
- 2. θ is an arbitrary AND2/INV decomposition of η^*

then $\theta \in D_n$

The resulting mapping graph encodes all the AND2/INV decompositions of all algebraic decompositions of η

49

Combined Decomposition and Technology Mapping

- Λ-mapping captures all AND2/INV decompositions of η: Phase 2 (subject graph generation) is subsumed
- Δ-mapping captures all algebraic decompositions: Phase 2 and Phase 1 are subsumed

Combined Decomposition and Technology Mapping

- Summary
 - Logic decomposition during technology mapping
 - Efficiently encode a set on AND2/INV decompositions
 - □ Dynamically perform logic decomposition
 - Two mapping procedures
 - □ Λ-mapping: optimal over all AND2/INV decompositions (associative rule)
 - □ ∆-mapping: optimal over all algebraic decompositions (distributive rule)
 - Was implemented and used for commercial design projects (in DEC/Compac alpha)
 - Extended for sequential circuits:
 - □ considers all retiming possibilities (implicitly) and algebraic factors across latches