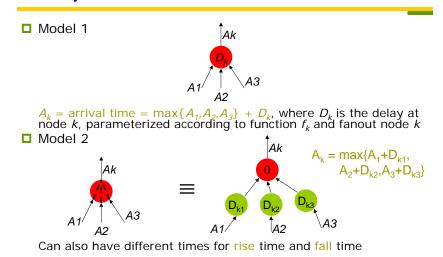
Logic Synthesis and Verification

Jie-Hong Roland Jiang 江介宏

Department of Electrical Engineering National Taiwan University

Fall 2012

Delay Models



Timing Analysis & Optimization

Reading: Logic Synthesis in a Nutshell Sections 5 & 6

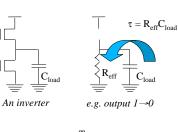
part of the following slides are by courtesy of Andreas Kuehlmann

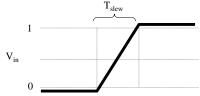
2

Gate Delay

The delay of a gate depends on its circuit context, and in particular:

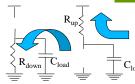
- 1. Output Load
 - Capacitive loading ∞ the charges that a gate must move to swing the output voltage
 - Due to interconnect and logic fanout
- 2. Input Slew
 - Slew = transition time
 - Slower transistor switching → longer delay, longer output slew





Rising and Falling Edges

- Driving strengths of pull-up and pull-down networks may not be equivalent
 - Rising and falling outputs may have different delays



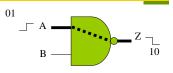
5

7

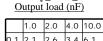
- Idea: maintain the latest/earliest arrival time of rising and falling transitions independently
 - Unateness of each input/output pair is encoded in the library
 - Positively unate inputs: only trigger output transitions in the same direction (e.g. an AND gate)
 - Negatively unate inputs: only trigger output transitions in the opposite direction (e.g. a NOR gate)
 - A transition on a binate input could trigger either direction on an output (e.g. an XOR gate)
 - Only considers local functionality, but allows a less conservative analysis

Timing Library

- Timing library contains all relevant information about each standard cell
 - E.g., pin direction, clock, pin capacitance, etc.
- Delay (fastest, slowest, and often typical) and output slew are encoded for each input-to-output path and each pair of transition directions
- Values typically represented as 2 dimensional look-up tables (of output load and input slew)
 - Interpolation is used



Path(
inputPorts(A),
outputPorts(Z),
inputTransition(01),
outputTransition(10),
"delay_table_1",
"output_slew_table_1"
);
"delay table 1" 🔶

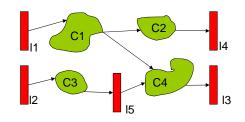


SE 1.0 2.0 4.0	10.0	
▶ 0.1 2.1 2.6 3.4	6.1	
0.1 2.1 2.6 3.4 0.5 0.5 2.4 2.9 3.9 1	7.2	
H 1026 34 408	8.1	
2.0 2.8 3.7 4.9	10.3	

6

Sequential Circuit

- **\square** Arrival times known at I_1 , I_2 , and I_5 (PIs and latch outputs)
- **\square** Required times known at $I_{3'}$, $I_{4'}$ and I_5 (Pos and latch inputs)
- Delay analysis gives arrival and required times (hence slacks) for C₁, C₂, C₃, C₄



Arrival Time Calculation

```
// level of PI nodes initialized to 0,
// the others are set to -1.
// Invoke LEVEL from PO
Algorithm LEVEL(k) { // levelize nodes
if( k.level != -1)
return(k.level)
else
k.level = 1+max{LEVEL(k<sub>i</sub>) | k<sub>i</sub> ∈ fanin(k)}
return(k.level)
}
// Compute arrival times:
// Given arrival times on PI's
Algorithm ARRIVAL() {
for L = 1 to MAXLEVEL
for {k|k.level = L}
A<sub>k</sub> = MAX{A<sub>ki</sub>} + D<sub>k</sub>
```

Required Time Calculation

Required time:

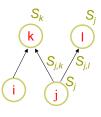
- Given required times on primary outputs
- Traverse in reverse topological order (i.e. from POs to PIs)
- If (k_i, k) is an edge between k_i and k_i , the required time of this edge is $R_{k_i,k} = R_k D_k$
- The required time of output of node k is $\vec{R}_k = \min \{ R_{k,k_j} | k_j \in \text{fanout}(k) \}$
- // Compute required times: // Given required times on PO's Algorithm REQUIRED() { for L = MAXLEVEL-1 to 0 for {k | k.level = L} R_k = MIN{R_{k,ki}}

R_k F k j k_{i1} k_{i2}

Slack

Slack:

Slack at the output of node k is $S_k = R_k - A_k$ Since $R_{j,k} = R_k - D_k$ $S_{j,k} = R_{j,k} - A_j$ $S_{j,k} + A_j = R_k - D_k = S_k + A_k - D_k$ Since $A_k = \max \{A_i, A_j\} + D_k$ $S_{j,k} = S_k + \max \{A_{fanin(k)}\} - A_j$ $S_j = \min\{S_{j,fanout(j)}\}$



□ Note:

- Each edge of a circuit graph has a slack and required time
- Negative slack is bad

Static Timing Analysis

■ A static critical path of a Boolean network is a path P = { $n_1, n_2, ..., n_p$ }, where $S_{n_{k'}, n_{k+1}} < 0$

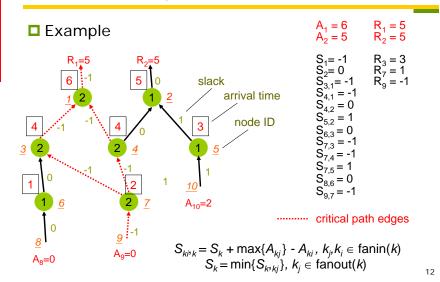
Note:

□ If a node *n* is on a static critical path, then at least one of the fanin edges of *n* is critical. Hence, all critical paths reach from an input to an output.

□ There may be several critical paths

□ Timing optimization is a min-max problem: minimize max{-S_i, 0}

Static Timing Analysis



11

9

Static Timing Analysis

Problems

- We want to determine the true critical paths of a circuit in order to:
 - determine the minimum cycle time that a circuit will function correctly
 - identify critical paths for performance optimization don't want to try to optimize wrong (non-critical) paths

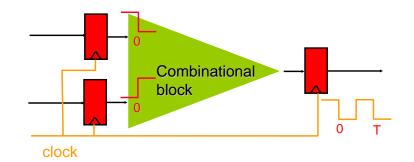
Implications:

Don't want false paths (produced by static delay analysis)Delay model is a worst case model

- Need to ensure correctness for case where i^{th} gate delay $\leq D_i^{Max}$

Functional Timing Analysis

Functional timing analysis estimates when the output of a given circuit gets stable



Functional Timing Analysis

Motivation

Timing verification

Verifies whether a design meets a given timing constraint

E.g., cycle-time constraint

Timing optimization

Needs to identify critical portion of a design for further optimization

Critical path identification

In both applications, accurate analysis is desirable

Gate-Level Timing Analysis

- Naïve approach Simulate all input vectors with SPICE
 - Accurate, but too expensive

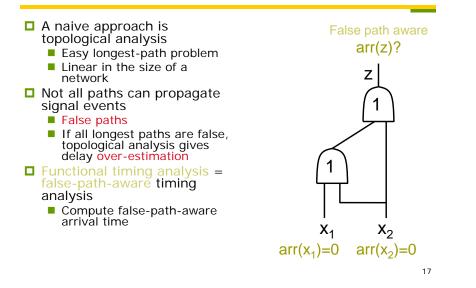
Gate-level timing analysis (our focus)

- Less accurate than SPICE due to the level of abstraction, but much more efficient
- Scenario:

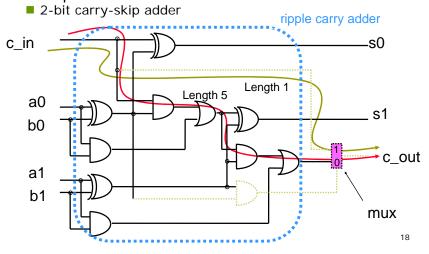
 Gate/wire delays are pre-characterized (accuracy loss)
 Perform timing analysis of a gate-level circuit assuming the gate/wire delays

13

Gate-Level Timing Analysis



Gate-Level Timing Analysis

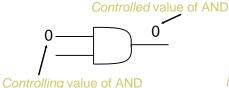


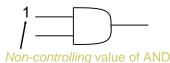
False Path Analysis

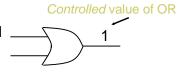
- □ Is a path responsible for circuit delay?
 - If the answer is no, can ignore the path for delay computation
- Check the falsity of long paths until we find the longest true path
 - How can we determine whether a path is a false path?
- Delay under-estimation is unacceptable
 - Can lead to overlooking timing violation
- Delay over-estimation is acceptable, but not desirable
 - Topological analysis may yield over-estimation, but never under-estimation

False Path Analysis

Controlling and non-controlling values





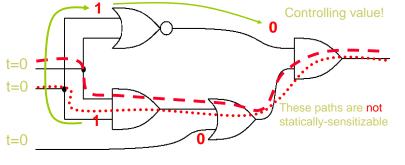


Controlling value of OR

False Path Analysis Static Sensitization

Static sensitization

- A path is *statically-sensitizable* if there exists an input vector such that all the side-inputs to the path are of non-controlling values
 - This is independent of gate delays



The longest true path is of length 2?

False Path Analysis Static Sensitization

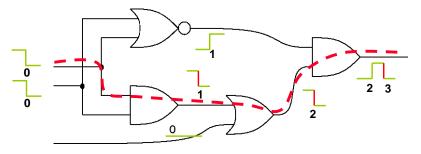
- Problem: The idea of forcing noncontrolling values to side inputs is okay, but timing was ignored
 - The same signal can have a controlling value at one time and a non-controlling value at another time

How about timing simulation as a correct method?

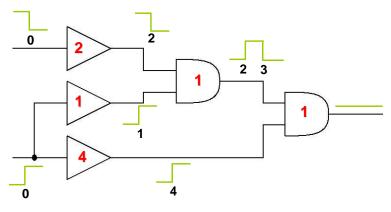
False Path Analysis Static Sensitization

Example

- The (dashed) path is responsible for delay!
- Delay under-estimation by static sensitization (delay = 2 when true delay = 3)



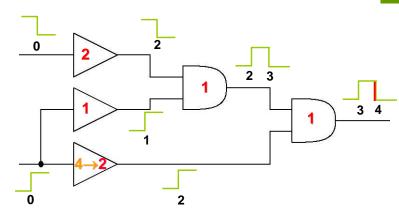
False Path Analysis Timing Simulation



Implies delay = 0 under input vector (0,1) BUT!

21

False Path Analysis Timing Simulation



Implies delay = 4 under the same input (0,1) as before

25

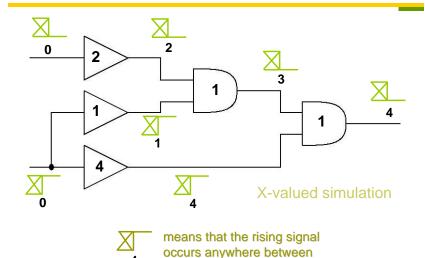
False Path Analysis Timing Simulation

- Problem: If gate delays are reduced, delay estimates can increase
- □ Not acceptable since
 - Gate delays are just upper-bounds, actual delay is in [0,d]
 - Delay uncertainty due to manufacturing
 - We are implicitly analyzing a family of circuits where gate delays are within the upper-bounds

False Path Analysis Timing Simulation

- Definition: Given a circuit C and a delay estimation method delay_estimate, if
 - C* is obtained from C by reducing some gate delays, and
 - delay_estimate(C*) ≤ delay_estimate(C), then delay_estimate has *monotone speedup*
- Timing simulation does not have such a property

False Path Analysis Timing Simulation



 $t = -\infty$ and t = 4.

27

False Path Analysis Timing Simulation

□ Timed 3-valued (0,1,X) simulation

- called X-valued simulation
- monotone speedup property is satisfied

□ Underlying model of

floating mode condition

□Applies to "simple gate" networks only

viability

□Applies to general Boolean networks

False Path Analysis Timing Simulation

- Checking the falsity of every path explicitly is too expensive due to the exponential number of paths
- Modern approach:
 - 1. Start: $L = L_{top} =$ topological longest path delay $L_{old} = 0$

2. Binary search: if (Delay(L)) (*) $L_d = |L - L_{old}|/2$, $L_{old} = L$, $L = L + L_d$ else $L_d = |L - L_{old}|/2$, $L_{old} = L$, $L = L - L_d$ if (L > L_{top} or L_d < threshold) $L = L_{old}$, done (*) Delay(L) = 1 if there is an input vector under which an output gets stable only at time *t* where $L \le t$?

Can be reduced to a SAT or timed-ATPG problem

30

SAT-Based False Path Analysis

Decision problem:

Is there an input vector under which the output gets stable only after t = T?

Idea:

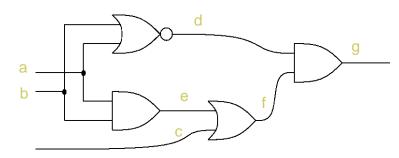
- 1. Characterize the set of all input vectors S(T) that make the output stable no later than t = T
- 2. Check if S(T) contains S (all possible input vectors)

Can be solved as a SAT problem:

- Is S \ S(T) empty? set difference + emptiness checking
 - □ Let F and F(T) be the characteristic functions of S and S(T)
 - Is F ∧¬F(T) satisfiable?

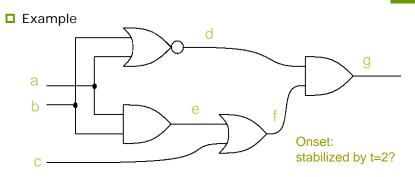
SAT-Based False Path Analysis

Example



Assume all the PIs arrive at t = 0, all gate delays = 1 Is the output stable time t > 2?

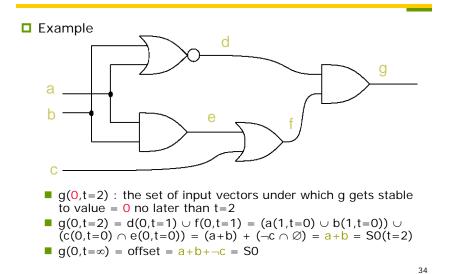
SAT-Based False Path Analysis



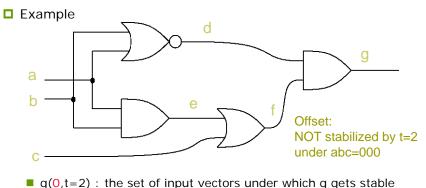
- g(1,t=2): the set of input vectors under which g gets stable to value = 1 no later than t =2
- $g(1,t=2) = d(1,t=1) \cap f(1,t=1) = (a(0,t=0) \cap b(0,t=0)) \cap (c(1,t=0) \cup e(1,t=0)) = \neg a \neg b (c \cup \emptyset) = \neg a \neg b c = S1(t=2)$
- $g(1,t=\infty) = \text{onset} = \neg a \neg b c = g(1,t=2) = S1$

33

SAT-Based False Path Analysis



SAT-Based False Path Analysis



- g(0,t=2) : the set of input vectors under which g gets stable to 0 no later than t=2
- (0,t=2) = a+b
- $g(0,t=\infty) = offset = a+b+\neg c$
- $g(0,t=\infty) \setminus g(0,t=2) = (a+b+\neg c) \neg (a+b) = \neg a \neg b \neg c$ satisfiable

35

Timing Analysis

□ Summary

- False-path-aware arrival time analysis is wellunderstood
 - Practical algorithms exist

Remaining problems

 Incremental analysis (make it so that a small change in the circuit does not make the analysis start all over)
 Integration with logic optimization
 Clock domain crossing issues

Several factors affecting circuit delay:

Technology

- Design type (e.g. domino, static CMOS, etc.)
- Gate type
- Gate size

Circuit structure

- Length of computation paths
- False paths
- Buffering

Electrical parasitics

- Wire loads
- Layout

Timing Optimization

Problem statement

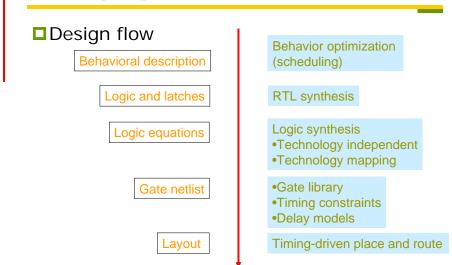
Given:

- Initial circuit function description
- Library of primitive functions
- Performance constraints (arrival/required times)

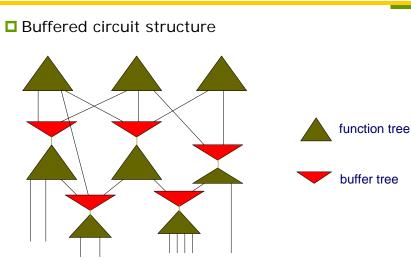
Generate:

- An implementation of the circuit using the primitive functions, such that:
 - performance constraints are met
 - Circuit area is minimized

Timing Optimization



Timing Optimization



37

- Circuit restructuring
 - Reschedule operations to reduce computation time
- □ Timing-driven technology mapping
 - Selection of gates from library
 Minimum delay

 Similar to area minimization under the load independent model
 - Minimize delay and area
- Implementation of buffer trees
- □ Gate/wire sizing
- Constant delay synthesis

Timing Optimization

Circuit restructuring

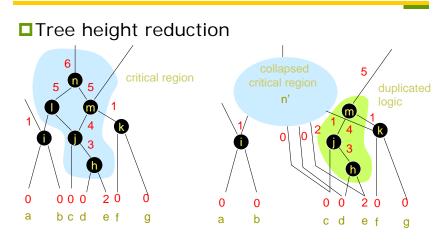
- Global: Reduce depth of entire circuit
 Partial collapsing
 Boolean simplification
- Local: Mimic optimization techniques in adders
 Carry lookahead (THR tree-height reduction)
 Conditional sum (GST transformation)
 Carry bypass (GBX transformation)

Timing Optimization

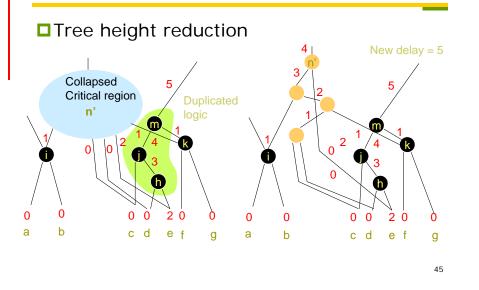
Circuit restructuring

- Performance measured by logic levels, sensitisable paths, technology-dependent delays
- Level-based optimization
 - Tree height reduction
 Partial collapsing and simplification
 Generalized select transform
- Sensitisable path based optimization
 Generalized bypass transform

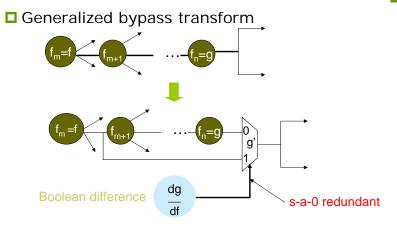
Timing Optimization



41

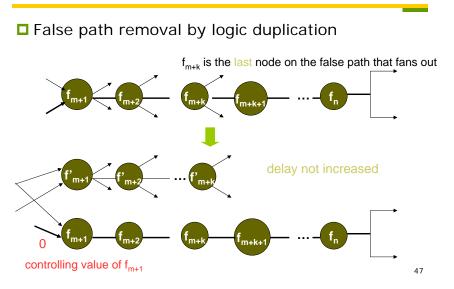


Timing Optimization

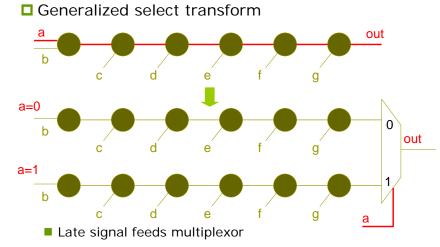


Make critical path false to bypass critical logic and speed up circuit

Timing Optimization



Timing Optimization



Summary

- There are various methods for delay optimization at different synthesis stages
 - □No single technique dominates
 - ■Most techniques (except false path removal by logic duplication) ignore false paths when assessing the delay and critical regions