
1

Switching Circuits &
Logic Design

Jie-Hong Roland Jiang
江介宏

Department of Electrical Engineering
National Taiwan University

Fall 2013

2

§2 Boolean Algebra

3

Outline

Introduction
Basic operations
Boolean expressions and truth tables
Basic theorems
Commutative, associative, and distributive

laws
Simplification theorems
Multiplying out and factoring
DeMorgan’s laws

4

Introduction

Boolean algebra is the mathematical
foundation of logic design
George Boole (1847)

logic + algebra Boolean algebra

Claude Shannon (1939)
Boolean algebra logic design

5

Introduction

 Boolean (switching) variable x {0,1}
 0, 1 are abstract symbols

They may correspond to {false, true} in logic, {off, on} of
a switch, {low voltage, high voltage} of a CMOS circuit, or
other meanings

 Boolean space {0,1}n

 The configuration space of all possible {0,1}
assignments to n Boolean variables

E.g.,
the Boolean space spanned by (x1,x2) is {0,1}2 =
{0,1}{0,1} = {00, 01, 10, 11}

x1

x2

0 1

1

00 10

01 11

6

Introduction

 Boolean function f(x1, x2, …, xn) is a mapping:
{0,1}n {0,1}, where xi’s are Boolean variables

E.g.,

f
x1

x2

x3

y

How many Boolean functions of n variables are there?

x1x2x3

000
001
010
011
100
101
110
111

y

0

1

7

Introduction
 There are many different ways to represent a Boolean

function
 E.g., truth tables, Boolean expressions (formulas), logic

circuits, Binary Decision Diagrams, combinatorial cubes, ...

f
x1
x2
x3

y

x1x2x3 y

000
001
010
011
100
101
110
111

0
1
0
1
0
1
1
0 x1

x2x3

000 100

111
011

001

110

101

010

0 1 0 1 0 1 1 0

x1

x2 x2

x3 x3 x3x3

Truth table
Combinatorial cube

Binary decision diagram

8

Introduction

 Different Boolean-function representations have
their own strengths and weaknesses
 They affect the computational efficiency of Boolean

manipulations in logic synthesis, hardware/software
verification, and many other applications

 Truth tables, Boolean expressions, and logic
circuits will be our main use in representing
Boolean functions
 Boolean expressions and logic circuits are closely related

They are built up from logic operators and Boolean
variables

9

Basic Operations

Three most basic operations in Boolean
algebra: {AND, OR, NOT}
 They form a functionally complete set of

operations, that is, any Boolean functions can
be constructed using these three operations
(why?)

Are {AND, NOT} functionally complete?

10

Basic Operations
NOT

NOT (complement, or inverse)
Notation: “ ”, “ ”,or “”

 Logic gate symbol:

0 = 1
1 = 0

X = 1 if and only if X = 0
X = 0 if and only if X = 1

X X (X, X)
X X
0
1

1
0

NOT-gate, inverter

11

Basic Operations
AND

AND (conjunction)
Notation: “ ”, “”

 Logic gate symbol:

0 0 = 0
0 1 = 0
1 0 = 0
1 1 = 1

AB C=AB
00
01
10
11

0
0
0
1

A

B
C = AB

AND-gate

12

Basic Operations
OR

OR (disjunction)
Notation: “+”, “”

 Logic gate symbol:

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 1

AB C=A+B
00
01
10
11

0
1
1
1

A

B
C = A+B

OR-gate

13

Boolean Expressions & Logic Circuits

AB+C

[A(C+D)]+BE

C
D

(C+D)

A

A(C+D)

B
E

BE

[A(C+D)]'

[A(C+D)]' + BE

B
B'

A AB'

C

(AB'+C)

14

Boolean Expressions & Logic Circuits

 Given a Boolean expression, we can construct a
functionally equivalent logic circuit (not unique)

 Given a logic circuit, we can derive a Boolean
expression of the corresponding Boolean function

 Given a Boolean expression or logic circuit, we
can derive the truth table of the corresponding
Boolean function

15

Boolean Expressions & Logic Circuits

 A Boolean expression (logic circuit) gives a
unique Boolean function
 The converse is not true, that is, a Boolean function can

be represented by different Boolean expressions (logic
circuits)

 A truth table gives a unique Boolean function,
and vice versa
 Truth tables are canonical in representing Boolean

functions
 Can use truth tables to show the equivalence of two

Boolean functions

16

Boolean Expressions & Truth Tables

ABC B AB AB+C A+C B+C (A+C)(B+C)

000
001
010
011
100
101
110
111

1
1
0
0
1
1
0
0

0
0
0
0
1
1
0
0

0
1
0
1
1
1
0
1

0
1
0
1
1
1
1
1

1
1
0
1
1
1
0
1

0
1
0
1
1
1
0
1

Truth-table proof of AB+C = (A+C)(B+C)
(equivalence under all truth assignments)

17

Basic Theorems of Boolean Algebra

Operations with 0 and 1:

X + 0 = X X 1 = X

X + 1 = 1 X 0 = 0

Idempotent laws
X + X = X X X = X

dual

Duality: interchange “0” and “1” and interchange “+” and “ ”

18

Basic Theorems of Boolean Algebra

Involution law
 (X) = X

Laws of complementarity
X + X = 1 X X = 0

Applications to logic simplification
E.g., (AB+D)E+1 = 1

(AB+D)(AB+D) = 0

19

Boolean Algebra with Switches

S S = 0, switch open
S = 1, switch closedX Y

X and Y are connected if and only if S = 1

The connectivity between X and Y is a function over S

20

Boolean Algebra with Switches

A B

A

B

X Y

X and Y are connected if and only if AB = 1

X and Y are connected if and only if A+B = 1

21

Boolean Algebra with Switches
Basic Theorems Revisited

Idempotent laws

A A A

A

A

=

A
=

(A A = A)

(A + A = A)

22

Boolean Algebra with Switches
Basic Theorems Revisited

Operations with 0 and 1
A

A
=

A

=

(A + 0 = A)

(A + 1 = 1)

23

Boolean Algebra with Switches
Basic Theorems Revisited

Laws of complementarity
A

A’ =

(A + A = 1)

A A’
=

(A A = 0)

24

Commutative, Associative, and
Distributive laws

Commutative laws
XY = YX X+Y = Y+X

B

A
=

A

B

B

A
=

A

B

25

Commutative, Associative, and
Distributive laws

Associative laws
 (XY)Z = X(YZ) = XYZ

(X+Y)+Z = X+(Y+Z) = X+Y+Z

B

A

C = B
A

C

B

A

C = B
A

C

26

Commutative, Associative, and
Distributive laws

Distributive laws
X(Y+Z) = XY+XZ X+YZ = (X+Y)(X+Z)

The second equality is valid for Boolean algebra but
not for ordinary algebra

Proof.
(X+Y)(X+Z) =
XX+XZ+YX+YZ =
X+XZ+XY+YZ =
X1+XZ+XY+YZ =
X(1+Z+Y)+YZ =
X1+YZ =
X+YZ

27

Simplification Theorems

XY + XY = X (X+Y)(X+Y) = X

X+XY = X X(X+Y) = X
Proof.
X+XY = X1+XY = X(1+Y) = X1 = X
X(X+Y) =XX+XY = X+XY = X

(X+Y)Y = XY XY+Y = X+Y
Proof.
Y+XY = (Y+X)(Y+Y) = (Y+X)1 = X+Y

28

Logic Circuit Simplification

F = A(A+B) = AA+AB = 0+AB = AB

Exercise (p.48)
Simplify Z = [A+BC+D+EF] [A+BC+(D+EF)]
Simplify Z = (AB+C)(BD+CE)+(AB+C)

B

A

A
F F

B
A

=

29

Multiplying Out and Factoring
 Sum-of-products (SOP), or Disjunctive Normal Form (DNF)

 Sum of products of literals (a literal is a variable x or its
complement x)
 E.g., abc+abd yes

a+b+c yes
abc yes
a(b+c)+abd no

 Any Boolean function can be represented in the SOP form
(Why?)

 Product-of-sums (POS), or Conjunctive Normal Form (CNF)
 Product of clauses (a clause is a sum of literals)

 E.g., (a+b+c)(a+d) yes
(a+b+c) yes
(a)(b)(c) yes
(a+bc)(a+d) no

 Any Boolean function can be represented in the POS form
(Why?)

30

Multiplying Out

 SOP
 When multiplying out an expression (to obtain an SOP),

the 2nd distributive law
(X+Y)(X+Z) = X+YZ
can be applied first when possible to simply the
expression

E.g.,

(A+BC)(A+D+E) = A+BC(D+E) = A+BCD+BCE

X Y X Z X Z

In contrast to,
(A+BC)(A+D+E) = A+AD+AE+ABC+BCD+BCE
= A(1+D+E+BC)+BCD+BCE = A+BCD+BCE

Y

31

Factoring

 POS
 Apply distributive laws

XY+XZ = X(Y+Z)
X+YZ = (X+Y)(X+Z)
to factor an expression in the POS form
Any expression can be factored to the POS form
An expression cannot be further factored if and only if it is

in the POS form

E.g.,

(A+BCD) = (A+B)(A+CD) = (A+B)(A+C)(A+D)

(AB+CD) = (AB+C)(AB+D) = (A+C)(B+C)(A+D)(B+D)

Exercise (p.51): Factor (CD+CE+GH)

32

Multiplying Out and Factoring

SOP in AND-OR circuit

B
A

E

C

C
A

D

E

E
D

C

A
B

AB+CDE+ACE A+B+C+DE

33

Multiplying Out and Factoring

POS in OR-AND circuit

B
A

E

C

C
A

D

E

E
D

C

A
B

ABC(D+E)(A+B)(C+D+E)(A+C+E)

34

DeMorgan’s Laws

 Complement by DeMorgan’s laws
 (X+Y) = X Y
 (X Y) = X + Y

XY X+Y (X+Y) XY XY (XY) X+Y

00
01
10
11

0
1
1
1

1
0
0
0

1
0
0
0

0
0
0
1

1
1
1
0

1
1
1
0

Proof by truth table

35

Generalized DeMorgan’s Laws

 (X1+X2+ +Xn) = X1 X2 Xn
 Complement of sum = product of complements

 (X1 X2 Xn) = X1+X2+ +Xn
 Complement of product = sum of complements

E.g.,

[(A+B)C] = (A+B)+(C) = AB+C

[(AB+C)D+E] = [(AB+C)D]E = [(AB+C)+D]E =
[(AB)C+D]E = [(A+B)C+D]E

36

Duality

 The dual FD of an expression F is formed by
replacing AND with OR, OR with AND, 0 with 1,
and 1 with 0
 FD can also be obtained by complementing F and then

complementing each individual variable

E.g.,
(AB+C)D = (A+B)C

 Equalities are preserved under duality, i.e.,
F = G iff FD = GD (justify prior theorems)
E.g.,
X(Y+Z) = XY+XZ X+YZ = (X+Y)(X+Z)dual

