Switching Circuits \＆ Logic Design

Jie－Hong Roland Jiang
江介宏
Department of Electrical Engineering National Taiwan University

Fall 2013
§4 Applications of Boolean Algebra Minterm \＆Maxterm Expansions

Outline

-Conversion of English sentences to Boolean expressions
-Combinational logic design using a truth table
\square Minterm and maxterm expansions
\square General minterm and maxterm expansions
-Incompletely specified functions

- Examples of truth table construction
-Design of binary adders and subtracters

Conversion of English Sentences to Boolean Expressions

\square Steps in designing a single-output combinational circuit:

1. Find a switching function that specifies the desired behavior of the circuit

- Translate English sentences into Boolean equations
- Associate a Boolean variable with each phrase having a value of "true" or "false"

2. Find a simplified algebraic expression for the function
3. Realize the simplified function using available logic elements

Conversion of English Sentences to Boolean Expressions

Example

\square Mary watches TV (F) if it is Monday night (A) and she has finished her homework (B)

- F=1 iff "Mary watches TV" is true
- A=1 iff "it is Monday night"
- $B=1$ iff "she has finished her homework"
$\square F=A \cdot B$ (equation)
- More accurately $A \cdot B \Rightarrow F$ (formula)

Conversion of English Sentences to Boolean Expressions

Example

\square The alarm will ring (Z) iff the alarm switch is turned on (A) and the door is not closed (B^{\prime}), or it is after 6 pm (C) and the window is not closed (D')
$\square Z=A B^{\prime}+C D^{\prime}$ (equation)
$■ \mathrm{Z} \Leftrightarrow\left(A B^{\prime}+C D^{\prime}\right), \mathrm{Z} \equiv\left(A B^{\prime}+C D^{\prime}\right)$ (formula)

Combinational Logic Design Using a Truth Table

For a 3-input Boolean function $f(A, B, C)$ with
$\mathrm{f}=1$ if $\mathrm{N} \geq 3$ and
$\mathrm{f}=0$ if $\mathrm{N}<3$,
where $N=A \times 2^{2}+B \times 2^{1}+C \times 2^{0}$

ABC
000
001
010
011
100
101
110
111

f
0
0
0
1
$1-$
$1-$
$1-$
$1-$
$1-$
1

Combinational Logic Design Using a Truth Table

Minterm and Maxterm Expansions

\square A minterm (maxterm) of n variables is a product (sum) of n literals in which each variable appears exactly once

- Recall a literal is a variable or its complement

Row No.	$A B C$	Minterms	Maxterms
0	000	$A^{\prime} B^{\prime} C^{\prime}=m_{0}$	$A+B+C=M_{0}$
1	001	$A^{\prime} B^{\prime} C=m_{1}$	$A+B+C^{\prime}=M_{1}$
2	010	$A^{\prime} B^{\prime}=m_{2}$	$A+B^{\prime}+C=M_{2}$
3	011	$A^{\prime} B^{\prime}=m_{3}$	$A+B^{\prime}+C^{\prime}=M_{3}$
4	100	$A B^{\prime} C^{\prime}=m_{4}$	$A^{\prime}+B+C=M_{4}$
5	101	$A B^{\prime} C=m_{5}$	$A^{\prime}+B+C^{\prime}=M_{5}$
6	110	$A B C^{\prime}=m_{6}$	$A^{\prime}+B^{\prime}+C=M_{6}$
7	111	$A B C=m_{7}$	$A^{\prime}+B^{\prime}+C^{\prime}=M_{7}$

Minterm and Maxterm Expansions

\square Minterm expansion (or called standard sum of products)

$$
\begin{aligned}
f & =A^{\prime} B C+A B^{\prime} C^{\prime}+A B^{\prime} C+A B C^{\prime}+A B C \\
& =m_{3}+m_{4}+m_{5}+m_{6}+m_{7} \quad(m \text {-notation }) \\
& =\sum m(3,4,5,6,7)
\end{aligned}
$$

Maxterm expansion (or called

 standard product of sums)$$
\begin{aligned}
f & =(A+B+C)\left(A+B+C^{\prime}\right)\left(A+B^{\prime}+C\right) \\
& =M_{0} M_{1} M_{2} \quad(M-\text { notation }) \\
& =\Pi M(0,1,2)
\end{aligned}
$$

ABC	f	f
000	0	1
001	0	1
010	0	1
011	1	0
100	1	0
101	1	0
110	1	0
111	1	0

Minterm and Maxterm Expansions Canonicity

\square Minterm and maxterm expansions are canonical representations, that is, two functions are equivalent iff they have the same minterm and maxterm expansions
\square Recall truth tables are also a canonical representation of Boolean functions

Minterm and Maxterm Expansions Complementation

$$
\begin{aligned}
f & =m_{3}+m_{4}+m_{5}+m_{6}+m_{7} \\
& =\sum m(3,4,5,6,7) \\
& =M_{0} M_{1} M_{2} \\
& =\Pi M(0,1,2) \\
f^{\prime} & =m_{0}+m_{1}+m_{2} \\
& =\sum m^{2}(0,1,2) \\
& =M_{3} M_{4} M_{5} M_{6} M_{7} \leftarrow \\
& =\Pi M(3,4,5,6,7)
\end{aligned} \quad \begin{aligned}
& \text { De Morgan's law } \\
& \text { by } m_{i}^{\prime}=M_{i}
\end{aligned}
$$

$010 \quad 0 \quad 1$
011 1 0
100 1 0
101 1 0
110 1 0

111	1	0

Minterm and Maxterm Expansions

Example

Find the minterm expansion of $f=a^{\prime}\left(b^{\prime}+d\right)+a c d^{\prime}$

```
\(f=a^{\prime} b^{\prime}+a^{\prime} d+a c d^{\prime}\)
    \(=a^{\prime} b^{\prime}\left(c+c^{\prime}\right)\left(d+d^{\prime}\right)+a^{\prime} d\left(b+b^{\prime}\right)\left(c+c^{\prime}\right)+a c d^{\prime}\left(b+b^{\prime}\right)\)
    = a'b'c'd' + a'b'c'd + a'b'cd' + a'b'cd + a'b'c'd +a'b'cd +
        a'bc'd + a'bcd + abcd' + ab'cd'
    \(=\Sigma \mathrm{m}(0,1,2,3,5,7,10,14)\)
    \(=\Pi M(4,6,8,9,11,12,13,15)\)
```


Exercise: find the maxterm expansion directly (p.100)

Minterm and Maxterm Expansions

Example

Show that $a^{\prime} c+b^{\prime} c^{\prime}+a b=a ' b '+b c+a c^{\prime}$ LHS:

$$
\begin{aligned}
& a^{\prime} c\left(b+b^{\prime}\right)+b^{\prime} c^{\prime}\left(a+a^{\prime}\right)+a b\left(c+c^{\prime}\right) \\
& =a a^{\prime} b c+a^{\prime} b^{\prime} c+a b^{\prime} c^{\prime}+a^{\prime} b^{\prime} c^{\prime}+a b c+a b c^{\prime} \\
& =\sum m(3,1,4,0,7,6)
\end{aligned}
$$

RHS:

$$
\begin{aligned}
& a^{\prime} b^{\prime}\left(c+c^{\prime}\right)+b c\left(a+a^{\prime}\right)+a c^{\prime}\left(b+b^{\prime}\right) \\
& =a^{\prime} b^{\prime} c+a^{\prime} b^{\prime} c^{\prime}+a b c+a a^{\prime} b c+a b c^{\prime}+a b^{\prime} c^{\prime} \\
& =\sum m(1,0,7,3,6,4)
\end{aligned}
$$

LHS = RHS

General Minterm and Maxterm Expansions

\square There are $2^{2^{n}}$ possible Boolean functions of n variables

There are 2^{n} minterms induced by n variables

- For each minterm, function F can be 0 or 1

$A B C$	F	$F=a_{0} m_{0}+a_{1} m_{1}+\cdots+a_{7} m_{7}=\sum a_{i} m_{i}$
000	a_{0}	
001	a_{1}	
010	a_{2}	$F=\left(a_{0}+M_{0}\right)\left(a_{1}+M_{1}\right) \cdots\left(a_{7}+M_{7}\right)=\Pi\left(a_{i}+M_{i}\right)$
011	a_{3}	
100	a_{4}	$F^{\prime}=\left[\Pi\left(a_{i}+M_{i}\right)\right]^{\prime}=\sum a_{i}^{\prime} m_{i}$
101	a_{5}	
110	a_{6}	$F^{\prime}=\left[\sum a_{i}^{\prime} m_{i}\right]^{\prime}=\Pi\left(a_{i}^{\prime}+M_{i}\right)$

General Minterm and Maxterm Expansions

DESIRED FORM

General Minterm and Maxterm Expansions

DESIRED FORM

Sets vs. Boolean Functions

\square Representing and manipulating sets with Boolean algebra
\square Boolean functions can be used to represent sets
$\square A$ Boolean function represents a set of minterms \square Associate minterms with set elements
Boolean operations can be used to achieve set operations

Sets vs. Boolean Functions

Example

Let $S=\{a, b, c, d, e, f, g, h\}$ be encoded with Boolean variables X, Y, Z as follows

S	X Y Z	$\mathrm{F}_{\mathrm{A}} \mathrm{F}_{\mathrm{B}} \mathrm{F}_{\mathrm{C}}$	
a	000	100	The subsets $A=\{a, b, e, f\}, B=$
b	001	1111	$\{\mathrm{b}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{h}\}, \mathrm{C}=\{\mathrm{b}, \mathrm{d}\}$ can be
c	010	000	represented by Boolean functions
d	011	011	$\mathrm{F}_{\mathrm{A}}=\mathrm{Y}^{\prime}, \mathrm{F}_{\mathrm{B}}=\mathrm{X}+\mathrm{Z}, \mathrm{F}_{\mathrm{C}}=\mathrm{X}^{\prime} \mathrm{Z}$, respectively
e	100	110	
f	1001	110	The set $A \cap B$ can be represented by $F_{A} \cdot F_{B}$
g	$1 \begin{array}{lll}1 & 1 & 0\end{array}$	0	
h	111	010	The set $A \cup C^{\prime}$ can be represented by $F_{A}+F_{C}^{\prime}$

Sets vs. Boolean Functions

Isomorphism between sets and Boolean functions
\square Sets

- A, B
$a_{1} \in A, a_{2} \notin A$
\square Intersection
$\square \mathrm{A} \cap \mathrm{B}$
\square Union
- AuB
\square Complement - A'

Boolean functions
$-\mathrm{F}_{\mathrm{A}}, \mathrm{F}_{\mathrm{B}}$

- $\mathrm{F}_{\mathrm{A}}\left(\left[\mathrm{a}_{1}\right]\right)=1, \mathrm{~F}_{\mathrm{A}}\left(\left[\mathrm{a}_{2}\right]\right)=0$

Let $\left[a_{i}\right]$ be the binary codes of a_{i}
\square AND
$F_{A} \cdot F_{B}$
\square OR
$F_{A}+F_{B}$
\square Complement
$\square \mathrm{F}_{\mathrm{A}}{ }^{\prime}$

Sets vs. Boolean Functions

Example

$(R \cap G) \cup\left(R^{\prime} \cap B\right) \cup(G \cap B)=(R \cap G) \cup\left(R^{\prime} \cap B\right)$

$$
F_{R} F_{G}+F_{R}{ }^{\prime} F_{B}+F_{G} F_{B}=F_{R} F_{G}+F_{R}{ }^{\prime} F_{B}
$$

(consensus theorem)

Incompletely Specified Functions

Incompletely Specified Functions

ABC	F	
000	1	
001	x	
010	0	
011	1	
100	0	
101	0	
110	x	
111	1	

Don't cares can be exploited to minimize F :
Assign 0 to both x :

$$
\begin{aligned}
F & =A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C+A B C \\
& =A^{\prime} B^{\prime} C^{\prime}+B C
\end{aligned}
$$

Assign 1 to 1st $\mathrm{x}, 0$ to 2 nd x :

$$
\begin{aligned}
& \mathrm{F}=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}+\mathrm{A}^{\prime} \mathrm{BC}+\mathrm{ABC} \\
&=\mathrm{A}^{\prime} \mathrm{B}^{\prime}+\mathrm{BC} \\
& \text { Simpler }
\end{aligned}
$$

Assign 1 to both x :

$$
\begin{aligned}
F & =A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B^{\prime} C+A^{\prime} B C+A B C^{\prime}+A B C \\
& =A^{\prime} B^{\prime}+B C+A B
\end{aligned}
$$

Incompletely Specified Functions

$A B C$	F		
000	1	$F=\sum m(0,3,7)+\sum d(1,6)$	(don't care minterms)
001	X		
010	0		
011	1		
100	0	$F=\Pi M(2,4,5) \cdot \Pi D(1,6)$	(don't care maxterms)
101	0		
110	x		
111	1		

Examples of Truth Table Construction Binary Codes

Decimal digit	$8-4-2-1$ code (BCD)	6-3-1-1 code	Excess-3 code (BCD+3)	2-out-of-5 code (good for error checking)	Gray code (good for low power and reliability)
0	0000	0000	0011	00011	0000
1	0001	0001	0100	00101	0001
2	0010	0011	0101	00110	0011
3	0011	0100	0110	01001	0010
4	0100	0101	0111	01010	0110
5	0101	0111	1000	01100	1110
6	0110	1000	1001	10001	1010
7	0111	1001	1010	10010	1011
8	1000	1011	1011	10100	1001
9	1001	1100	1100	11000	1000

Examples of Truth Table Construction

Error detector for 6-3-1-1 code

| $A B C D$ | F | $F(x)=1$ indicates an error has occurred, i.e., |
| :--- | :--- | :--- | :--- |
| 0000 | 0 | x is an invalid 6-3-1-1 code |
| 0001 | 0 | |
| 0010 | 1 | |
| 0011 | 0 | $F=\sum m(2,6,10,13,14,15)$ |
| 0100 | 0 | $=A^{\prime} B^{\prime} C D^{\prime}+A^{\prime} B^{\prime}+D^{\prime}+A B^{\prime} C D^{\prime}+A B C D^{\prime}+A B C^{\prime} D+A B C D$ |
| 0101 | 0 | $=\underline{A^{\prime} C D^{\prime}+A C D^{\prime}+A B D}$ |
| 0110 | 1 | $=C^{\prime}+A B D$ |
| 0111 | 0 | |

Examples of Truth Table Construction

- Multiples of 3 for 8-4-2-1 code

Design of Binary Adders

\square Adder design for 4-bit unsigned binary numbers

$$
\begin{array}{rr}
& \mathrm{A} \\
& \mathrm{~A}_{3} \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0} \\
\mathrm{~B} & \mathrm{~B}_{3} \mathrm{~B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0} \\
+ & \mathrm{C}_{\mathrm{in}}
\end{array}
$$

Method 1: Design from constructing a truth table of the whole system (difficult simplification and complex implementation)
Method 2: Design by constructing and composing local modules, i.e., full adders (simple and extendable to n-bit adder design; long circuit delay due to carry propagation)

Design of Binary Adders By Construction from Truth Table

\square A 2-bit adder example

Design of Binary Adders By Composing Full Adders

		$X Y C_{\text {in }}$	$\mathrm{C}_{\text {out }}$	Sum
		000	0	0
$\mathrm{X} \longrightarrow$		001	0	1
$Y \longrightarrow$ Full		010	0	1
$\mathrm{C} \longrightarrow$ Adder	\rightarrow Sum	011	1	0
		100	0	1
		101	1	0
		110	1	0
		111	1	1

Design of Binary Adders

Adder design for 4-bit signed binary numbers

- 2's complement:
$\square \mathrm{C}_{4}$ ignored
- Because of $\mathrm{C}_{0}=0$, the first full adder can be simplified to a half adder, with $\mathrm{S}_{0}=\mathrm{A}_{0} \oplus \mathrm{~B}_{0}$ and $\mathrm{C}_{1}=\mathrm{A}_{0} \mathrm{~B}_{0}$
- 1's complement:
- End-around carry

Overflow condition: $V=A_{3}{ }^{\prime} B_{3}{ }^{\prime} S_{3}+A_{3} B_{3} S_{3}{ }^{\prime}$

Design of Binary Subtracters

\square Subtracter design using full adders
$\square A-B=A+(-B)$ with $-B$ in the 2 's complement

Design of Binary Subtracters

\square Subtracter design using full adders

- $A-B=A+(-B)$ with $-B$ in the 1 's complement

end-around carry

Design of Binary Subtracters

\square Subtracter design using full subtracters
Work also for 1's and 2's complements (why?)

$x_{i} y_{i} b_{i}$	$\mathrm{b}_{\mathrm{i}+1} \mathrm{~d}_{\mathrm{i}}$
000	00
001	11
010	11
011	10
100	01
101	00
110	00
111	11

\rightarrow	Column i before borrow	Column i after borrow
x_{1}	0	10
$-y_{i}$	-1	-1
- $\mathrm{b}_{\text {i }}$	-1	-1
d_{i}		0

