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§5 Karnaugh Maps

K-map Walks and Gray Codes

http://asicdigitaldesign.wordpress.com/2008/09/26/k-maps-walks-and-gray-codes/
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Outline

Minimum forms of switching functions
Two- and three-variable Karnaugh maps
Four-variable Karnaugh maps
Determination of minimum expressions 

using essential prime implicants
Five-variable Karnaugh maps
Other uses of Karnaugh maps
Other forms of Karnaugh maps
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Limitations of Algebraic Simplification

 Two problems of algebraic simplification
1. Not systematic
2. Difficult to check if a minimum solution is achieved

 The Karnaugh map method overcomes these 
limitations
 Typically for Boolean functions with  5 variables
 The Quine-McCluskey method can deal with even 

larger functions
 (Subject of Unit 6, skipped)
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Minimum Forms of Switching 
Functions

 Correspondence between Boolean expressions 
and logic circuits
 SOP (POS) can be implemented with two-level AND-OR 

(OR-AND) gate circuits
 Reducing the number of terms and literals of an SOP 

expression corresponds to reducing the number of gates
and gate inputs
Combine terms by XY'+XY=X
Eliminate redundant terms by consensus theorem

 Minimum SOP is not necessarily unique
 An SOP may be minimal (locally) but not minimum 

(globally)
E.g., 

F = a'b'c'+a'b'c+a'bc'+ab'c+abc'+abc
= a'b'+b'c+bc'+ab (minimal but not minimum)
= a'b'+bc'+ac (minimum)
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Two-Variable Karnaugh Maps

 2-variable K-map
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Three-Variable Karnaugh Maps

 3-variable K-map
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Three-Variable Karnaugh Maps

 3-variable K-map (zeros omitted)
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Three-Variable Karnaugh Maps

 3-variable K-map
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Three-Variable Karnaugh Maps

 3-variable K-map
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Three-Variable Karnaugh Maps

 3-variable K-map
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Three-Variable Karnaugh Maps

 3-variable K-map
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xy+x'z+yz = xy+x'z
(consensus theorem)
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Three-Variable Karnaugh Maps

 3-variable K-map
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Four-Variable Karnaugh Maps

4-variable K-map
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Four-Variable Karnaugh Maps

4-variable K-map
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simplify
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Four-Variable Karnaugh Maps

4-variable K-map
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Four-Variable Karnaugh Maps
 Simplify incompletely specified function

 All the 1’s must be covered, but X’s are optional and are set to 
1’s only if they will simplify the expression
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Four-Variable Karnaugh Maps
 Simplify product-of-sums

 Circle 0’s instead of 1’s
 Apply De Morgan’s law converting SOP to POS
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f = x'z'+wyz+w'y'z'+x'y

simplify

f' = y'z + wxz'+w'xy
f = (y+z')(w'+x'+z)(w+x'+y')
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Determination of Minimum Expressions 
Using Essential Prime Implicants

 Implicant
 A product term of a function

Any single 1 or any group of 1’s on a K-map combined 
together forms a product term

 Prime implicant
 A maximal implicant

An implicant that cannot be combined with another term 
to eliminate a variable

 All of the prime implicants of a function can be 
obtained from a K-map by expanding the 1’s as 
much as possible in every possible way
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Determination of Minimum Expressions 
Using Essential Prime Implicants

Example
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Determination of Minimum Expressions 
Using Essential Prime Implicants

 Determine all prime implicants
 In finding prime implicants, 

don’t cares are treated as 1’s. 
However, a prime implicant
composed entirely of don’t 
cares can never be part of the 
minimum solution

 Not all prime implicants are 
needed in forming the 
minimum SOP

Example
 All prime implicants: 

a'b'd, bc', ac, a'c'd, ab, b'cd
(composed entirely of don’t 
cares)

 Minimum solution: 
F = a'b'd+bc'+ac
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Determination of Minimum Expressions 
Using Essential Prime Implicants

 Essential prime implicant (EPI)
 A prime implicant that covers some minterm not covered by 

any other prime implicant
 If a single term covers some minterm and all of its adjacent 1’s 

and X’s, then the term is an EPI
 Must be present in the minimum SOP
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Determination of Minimum Expressions 
Using Essential Prime Implicants

 SOP minimization
1. Select all essential 

prime implicants
2. Find a minimum set of 

prime implicants which 
cover the minterms
not covered by the 
essential prime 
implicants
 There may be 

freedom left after all 
essential prime 
implicants are 
selected (it affects 
optimality especially 
for functions with 
more variables)
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Determination of Minimum Expressions 
Using Essential Prime Implicants

 Flowchart for determining a minimum SOP using K-map

Choose a 1 which has 
not been covered

Find all adjacent 
1’s and X’s

Are the chosen 
1 and its adjacent 1’s 
and X’s covered by a 

single term?

That term is an essential 
prime implicant. Loop it

All 
uncovered 1’s 

checked?

STOP

Find a minimum set of prime 
implicants which cover the 
remaining 1’s on the map

YES

NO

YES

NO

Note: All essential prime implicants
have been determined at this point
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Determination of Minimum Expressions 
Using Essential Prime Implicants

Example
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Step 1: 14 checked
Step 2: 15 checked
Step 3: 16 checked 

EPI  A'B selected
Step 4: 18 checked
Step 5: 19 checked
Step 6: 110 checked

EPI  AB'D' selected
Step 7: 113 checked

(up to this point all EPIs determined)

Step 8: AC'D selected to 
cover remaining 1’s
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Five-Variable Karnaugh Maps

5-var K-map
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Five-Variable Karnaugh Maps

5-var K-map
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Five-Variable Karnaugh Maps

5-var K-map
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Five-Variable Karnaugh Maps

5-var K-map
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Other Uses of Karnaugh Maps

Use K-map to prove the equivalence of 
two Boolean expressions
K-maps are canonical representations of 

Boolean functions, similar to truth tables

Use K-map to perform Boolean operations
AND, OR, NOT operations can be done over K-

maps (truth tables)
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Other Uses of Karnaugh Maps

Use K-map to facilitate factoring
 Identify common literals among product terms
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Use K-map to guide simplification

Other Uses of Karnaugh Maps

F = ABCD+B'CDE+A'B'+BCE'
= ABCD+B'CDE+A'B'+BCE'+ACDE
= A'B'+BCE'+ACDE
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Other Forms of Karnaugh Maps

Other conventions (Veitch diagrams)
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Other Forms of Karnaugh Maps

Other conventions (5-var K-map)
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Other Forms of Karnaugh Maps

Other conventions (5-var Veitch diagram)
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