Switching Circuits \＆ Logic Design

Jie－Hong Roland Jiang
江介宏
Department of Electrical Engineering National Taiwan University

Fall 2013
§8 Combinational Circuit Design and Simulation Using Gates

Outline

\square Gate delays and timing diagrams

-Hazards in combinational logic
\square Simulation and testing of logic circuits

Design of Circuits with Limited Gate Fan-in

\square If a 2 -level realization of a circuit requires more gate inputs than allowed, factoring the logic expression to obtain a multi-level realization may be necessary

Example

- Realize $\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\sum \mathrm{m}(0,3,4,5,8,9,10,14,15)$ using 3 -input NOR gates

$$
\begin{aligned}
& f^{\prime}=b^{\prime} d\left(a^{\prime} c^{\prime}+a c\right)+a^{\prime} c\left(b+d^{\prime}\right)+a b c^{\prime} \\
& f=\left[b+d^{\prime}+(a+c)\left(a^{\prime}+c^{\prime}\right)\right]\left[a+c^{\prime}+b^{\prime} d\right]\left[a^{\prime}+b^{\prime}+c\right]
\end{aligned}
$$

Gate Delays and Timing Diagrams Gate Delays

\square The output of a logic gate takes a finite time (propagation delay) to react to an input change

- Propagation delays for IC gates are typically in a few nanoseconds ($\mathrm{ns}=10^{-9} \mathrm{sec}$)
- Propagation delays for $0 \rightarrow 1$ and $1 \rightarrow 0$ output changes may be different

Gate Delays and Timing Diagrams Timing Diagrams

\square A timing diagram shows various signals in the circuit as a function of time

Gate Delays and Timing Diagrams Timing Diagrams

-Circuit with a delay element

Hazards in Combinational Circuits

\square When the input to a combinational circuit changes, unwanted switching transients
(hazards) may appear in the output
These transients occur when different paths from input to output have different propagation delays

Hazards are undesirable

- They consume power/energy
- They may result in function errors in certain circuit design styles (e.g., domino logic)
- They may slow down the performance of sequential circuits

Hazards in Combinational Circuits Types of Hazards

\square Static 1-hazard: a circuit output may momentarily go to 0 when it should remain a constant 1Static 0-hazard: a circuit output may momentarily go to 1 when it should remain a constant 0
\square Dynamic hazard: a circuit output may change 3 or more times when it should change from 0 to 1 (or 1 to 0)

The steady-state output of the circuit is correct, but a switching transient appears at the output when the input is changed

Hazards in Combinational Circuits Hazards in 2-level Circuits

\square Hazards of 2-level AND-OR (OR-AND) circuits can be detected using K-maps and removed by adding terms (clauses)

- Static 1-hazard can appear in 2-level AND-OR circuits
- Static 0-hazard can appear in 2-level OR-AND circuits

Hazards in Combinational Circuits Static 1-Hazard

Example

Letting $\mathrm{A}=\mathrm{C}=1$ and B from 1 to 0 results in a static 1-hazard ($F=B+B^{\prime}$ with delayed inversion)

As seen from the K-map, no loop covers both minterms $A B C$ and $A B^{\prime} C$

both 0 for 10 ns after B changes
(assume propagation delay 10 ns for all gates)

Hazards in Combinational Circuits Static 1-Hazard

Example (cont'd)

D and E both 0 momentarily

Hazards in Combinational Circuits Hazard Detection and Removal

\square Hazard detection procedure for 2-level AND-OR circuits

1. Derive SOP expression of the circuit
2. Plot each product term on K-map and loop it
3. If any two adjacent 1's are not covered by the same loop, a 1-hazard exists for the transition between these two 1's
\square For an n-variable map, this transition occurs when one variable changes and the other $n-1$ variables are held constant (due to adjacent 1's)
\square Hazard removal for 2-level AND-OR circuits

- Add a loop to the map covering such adjacent 1's, and then add the corresponding gate to the circuit

Hazards in Combinational Circuits Hazard Detection and Removal

Example (cont'd)

- Circuit with hazard removed

The new added product term AC keeps on 1 (for $\mathrm{A}=\mathrm{C}=1$) when B changes from 1 to 0

$B A^{A}$	0	1
00	0	1
01	0	1
11	1	1
10	0	0

Hazards in Combinational Circuits Static 0-Hazard

Example

\square Letting $\mathrm{A}=0, \mathrm{~B}=1, \mathrm{D}=0$, and C from 0 to 1 results in a static 0 -hazard ($Z=C \cdot C^{\prime}$ with delayed inversion)

(assume 3ns delay for inverters and 5 ns for AND/OR gates)

Hazards in Combinational Circuits Static 0-Hazard

Example (cont'd)

Timing Diagram

Hazards in Combinational Circuits Static 0-Hazard

Example (cont'd)

- Eliminate the 0 -hazards by adding 3 additional loops
$Z=(A+C)\left(A^{\prime}+D^{\prime}\right)\left(B^{\prime}+C^{\prime}+D\right)\left(C+D^{\prime}\right)\left(A+B^{\prime}+D\right)\left(A^{\prime}+B^{\prime}+C^{\prime}\right)$

Hazards in Combinational Circuits Hazard-Free Circuit Design

\square Procedure for the design of circuits free of static and dynamic hazards

1. Find an SOP expression F^{t} for the output in which every pair of adjacent 1's is covered by a 1-term. (The sum of all prime implicants will always satisfy this condition.)
A two-level AND-OR circuit based on this F^{t} will be free of $1-, 0-$, and dynamic hazards

- Alternatively can start with a POS expression in which every pair of adjacent 0 's is covered by a 0 -term, and follow the dual procedure to design a hazard-free twolevel OR-AND circuit

2. If a different form of the circuit is desired, manipulate F^{t} to the desired form by simple factoring, DeMorgan's laws, etc. Treat each x_{i} and x_{i}^{\prime} as independent variables to prevent introduction of hazards

Hazards in Combinational Circuits

- Under what condition can static 0-hazard (1-hazard) appear in 2-level AND-OR (OR-AND) circuits?

Verification of Logic Circuits

\square Verification may take 70% of an entire circuit design time!

- Verification methodologies:
- Formal verification
- Mathematical proof of design correctness

IInformal verification

- Error identification by simulation (focus of textbook)

Verification objectives:
\square Functional verification

- for logical correctness
\square Timing verification
- for timing correctness

\square Testing

- for quality control of fabricated ICs (focus of textbook)
- simulation of faulty components in the circuit as an aid to finding tests for the circuit

Simulation and Testing of Logic Circuits

\square Logic circuits can be verified by actually building them or by simulating them on computers

- Simulation is easier, faster, and more economical
- Computer simulation involves specifying a circuit, specifying its inputs, and observing its outputs

Simulation and Testing of Logic Circuits Simulation Procedure

- Simulation procedure for combinational circuits:

1. Valuations are performed level by level (from inputs to outputs); changes are updated from gate inputs to gate outputs

- 0,1,X,Z four-valued simulation
- X: unknown value (different from don't cares!)
- Z: open circuit or high impedance (hi-Z)

2. Step 1 is repeated until no more changes. The circuit is then in steady-state condition, and the outputs can be read
3. Steps 1-2 are repeated every time a circuit input changes

Simulation and Testing of Logic Circuits Four-Valued Logic Simulation

Probe (observation point)

> | AND | \cdot | 0 | 1 | X | Z |
| ---: | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | |
| 1 | 0 | 1 | X | X | |
| X | 0 | X | X | X | |
| Z | 0 | X | X | X | |

$$
\begin{array}{r|cccc}
O R & + & 0 & 1 & X \\
Z \\
\hline 0 & 0 & 1 & X & X \\
1 & 1 & 1 & 1 & 1 \\
X & X & 1 & X & X \\
Z & X & 1 & X & X
\end{array}
$$

Simulation and Testing of Logic Circuits Error Causes

\square Possible causes of wrong outputs for some set of input values, e.g.,
■ In simulation
\square Incorrect design
\square Gates connected wrong
\square Wrong input signals to the circuit

- In fabricated circuit (built in lab)
\square Defective gates
\square Defective connecting wires

Simulation and Testing of Logic Circuits Locating Errors

Example

Locate the error for the circuit with function $\mathrm{F}=$ $A B\left(C^{\prime} D+C D^{\prime}\right)+A^{\prime} B^{\prime}(C+D)$. Assume it, after built in lab, has an incorrect output equal to 1 when $A=B=C=D=1$
\square By locating errors from the output to inputs, the inconsistency between the inputs and output of gate 3 is identified.

- Inputs to gate 3 can be connected wrong, gate 3 is defective, or input connections to gate 3 can be defective

