Switching Circuits \＆ Logic Design

Jie－Hong Roland Jiang
江介宏
Department of Electrical Engineering National Taiwan University

Fall 2013

§11 Latches and Flip－Flops

Outline

-Introduction

-Set-reset latch
-Gated D latch
\square Edge-triggered D flip-flop
पS-R flip-flop
J.K flip-flop
-T flip-flop
-Flip-flops with additional inputs
-Summary

Introduction

\square Combinational circuits

- Output is a function depending on the present input, but not past inputs
-Given an arbitrary input, a combinational circuit produces only one possible output (after certain delay)
Not necessarily acyclic (without feedback)
\square Sequential circuits
Output is a function depending on the past sequence of inputs
Must be cyclic (with feedback)
\square Synchronous sequential circuits
" With synchronization signals (clocked)
\square Asynchronous sequential circuits
- Without synchronization signals (clockless)

Introduction

\square Combinational circuits (without memory)

\square Sequential circuits (with memory)

Introduction

-To construct a system (e.g., circuit, neural network, etc.) that "remembers" something about the past history of the inputs
■ Need feedback!
\square Closed loops formed in a circuit connection

Introduction
 Memory devices

\square Memory devices
Latches and flip-flops can assume one of two stable output states, and have one or more inputs that can cause the output state to change
-Latch

- Have no clock input
\square Flip-flip
- Change output state in response to a clock input, but not a data input

Introduction

Feedback
\square Unstable
Oscillator

Feedback

Inverter with feedback

Oscillation at inverter output
\square Stable
Memory (1-bit)

Set-Reset Latch

-S-R latch

(a) Stable: $\mathrm{Q}=0$

(a) Stable: $\mathrm{Q}=1$

(b) Set: $\mathrm{S}: 0 \rightarrow 1 \Rightarrow \mathrm{Q}: 0 \rightarrow 1$

(b) Reset: $\mathrm{R}: ~ 0 \rightarrow 1 \Rightarrow \mathrm{Q}: 1 \rightarrow 0$

Set-Reset Latch

\square Cross-coupled form

Reset
Set

Reset
Set

Q directly above S (different
from the cross-coupled form)

Set-Reset Latch

-Improper S-R latch operation

When $S=R=1$, the circuit is unstable

- Disallow $S=R=1$ for $S-R$ latch

Set-Reset Latch

-Timing diagram

$t_{1}+\epsilon$

ع: two NOR-gate delay

The duration of the S (or R) input pulse must normally be no less than ε in order for a change in the state of Q to occur

Set-Reset Latch

Operation

\square Next-state equation (or characteristic equation):
$Q^{+}=S+R^{\prime} Q \quad(S R=0$, i.e., $S=R=1$ disallowed)
Present (or current) state Q
\square The state of the Q output of the latch or flip-flop at the time the input signals are applied (or changed)
Next state Q^{+}
\square The state of the Q output after the latch or flip-flop has reacted to these input signals

S(t)	$\mathrm{R}(\mathrm{t})$	Q(t)	$Q(t+\varepsilon)$	
0	0	0	07	
0	0	1	$1\}$	
0	1	0	0 \}	
0	1	1	0 \}	reset
1	0	0	1 \}	set
1	0	1	1 \}	
1	1	0	7	prohibited
1	1	1	- $\}$	-

Set-Reset Latch

Application

\square Switch debouncing

Note: only work for a double throw switch, switching between two contacts (but not for a single throw switch) why?

Set-Reset Latch

Alternative Implementation

$\square \bar{S}-\bar{R}$ latch
S-R latch using NAND gates

Gated D Latch

Gated D latch

Truth table

G D Q	Q^{+}	
000	0	
001	1	hold
010	0	$\left(\mathrm{Q}^{+}=\mathrm{Q}\right)$
011	1	
100	0	
101	0	transparent
110	1	$\left(\mathrm{Q}^{+}=\mathrm{D}\right)$
111	1	

GD				
Q 0001				
0	0	0	1	0
	1	1	1	0

$$
\mathrm{Q}^{+}=\mathrm{G}^{\prime} \mathrm{Q}+\mathrm{GD}
$$

$$
\left.\begin{array}{lll|l}
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1
\end{array}\right\}\left(\mathrm{Q}^{+}=\mathrm{D}\right)
$$

Edge-Triggered D Flip-Flop

- Unlike D latch, D flip-flip output changes only in response to the clock, not to a change in D
rising (or positive) edge triggered (0-to-1 transition on clock)
falling (or negative) edge triggered (1-to-0 transition on clock)

Rising-edge trigger个

Falling-edge trigger z

D	Q	Q^{+}	
0	0	0	
0	1	0	$\mathrm{Q}^{+}=\mathrm{D}$
1	0	1	
1	1	1	

Truth table

Edge-Triggered D Flip-Flop

-Timing diagram

(falling-edge trigger)

Edge-Triggered D Flip-Flop Implementation

\square D flip-flop
(rising-edge trigger)

- Composed of two gated D latches

If L_{1} starts following D before L_{2} takes on P , the FF will not function properly
Time analysis

Edge-Triggered D Flip-Flop Setup Time and Hold Time

Propagation delay: t_{p}

- The time between the active edge of the clock and the resulting change in the output
Setup time: t_{su}
- The amount of time D must be stable before the active edgeHold time: t_{h}
- The amount of time D must hold the same value after the

Edge-Triggered D Flip-Flop Determine Minimum Clock Period

\square Simple flip-flop circuit example ($\mathrm{t}_{\mathrm{p}} 5 \mathrm{~ns}, \mathrm{t}_{\text {su }} 3 \mathrm{~ns}$, inverter delay 2 ns)

Setup time satisfied

S-R Flip-Flop

\square Similar to S-R latch but with clock input

- Same truth table and characteristic equation
- Interpretation of Q^{+}is different
\square Latch: Q^{+}is the value of Q after the propagation delay through the latch
$\square \mathrm{FF}: \mathrm{Q}^{+}$is the value that Q assumes after the active clock edge

S-R flip-flop

Q changes at clock edges

Operation summary:

$$
\begin{array}{ll}
S=R=0 & \text { no state change } \\
S=1, R=0 & \text { set } Q \text { to } 1 \text { (after active Ck edge) } \\
S=0, R=1 & \text { reset } Q \text { to } 0 \text { (after active Ck edge) } \\
S=R=1 & \text { not allowed }
\end{array}
$$

S-R Flip-Flop Implementation

\square S-R flip-flop (master-slave flip-flop)

- Composed of two S-R latches
- Only allow the S and R inputs to change while CLK is high

Time analysis

Rising-edge-triggered FF: Inputs can change while CLK is low

Master-slave FF:
Incorrect if inputs change while CLK is low

J-K Flip-Flop

J-K flip-flop is an extended version of S-R flip-flop- $\mathrm{Q}^{+}=J \mathrm{Q}^{\prime}+\mathrm{K}^{\prime} \mathrm{Q}$

■ J corresponds to S (Jump to 1); K corresponds to R (Klear to 0)

- State toggled when $\mathrm{J}=\mathrm{K}=1$

> J-K flip-flop

J K Q	Q^{+}	
000	0	
001	1	Hold
010	0	Clear to 0
011	0	Clear to 0
100	1	Jump to 1
101	1	Jump to 1
110	1	Toggle
111	0	Togg

T Flip-Flop

T Flip-Flop
 Implementation

\square Conversion of J-K to T

- Connect J and K inputs of a J-K FF together
- $\mathrm{Q}^{+}=J \mathrm{Q}^{\prime}+\mathrm{K}^{\prime} \mathrm{Q} \Rightarrow$
$Q^{+}=T Q^{\prime}+T^{\prime} Q$

Flip-Flops with Additional Inputs Asynchronous Clear and Preset
\square Flip-flops often have additional inputs to set the flip-flops to an initial state independent of the clock

Ck	D	PreN	ClrN	Q^{+}
x	x	0	0	(not allowed)
x	x	0	1	1
x	x	1	0	0
\uparrow	0	1	1	0
\uparrow	1	1	1	1
$0,1, \downarrow$	x	1	1	Q (no change)

- CIrN and PreN are asynchronous clear and preset inputs
(they override the Ck and D inputs)
- CIrN and PreN are active low signals
- When ClrN=PreN=1, the FF is in normal operation
- O should not be applied to CIrN and PreN simultaneously

Flip-Flops with Additional Inputs Asynchronous Clear and Preset

\square Timing diagram for D flip-flop with asynchronous clear and preset

Flip-Flops with Additional Inputs Clock Enable

- D flip-flop with clock enable (CE)

D-CE symbol

Implementation 1: gating the clock

Loss of synchronization when

1) clock arrive at some FFs at different times
2) En changes at the wrong time

Implementation 2: no clock gating

Summary

\square Latch (w/o clock input) vs. flip-flop (w/ clock input)
\square Propagation delay, setup time, hold time
\square Present (current) state, next state

- Characteristic (next-state) equations
$\square \mathrm{Q}^{+}=\mathrm{S}+\mathrm{R}^{\prime} \mathrm{Q}(\mathrm{SR}=0)$
- $\mathrm{Q}^{+}=\mathrm{GD}+\mathrm{G}^{\prime} \mathrm{Q}$
- $\mathrm{Q}^{+}=\mathrm{D}$
- $\mathrm{Q}^{+}=\mathrm{D} \cdot \mathrm{CE}+\mathrm{Q} \cdot \mathrm{CE}^{\prime}$
- $\mathrm{Q}^{+}=\mathrm{J} \mathrm{Q}^{\prime}+\mathrm{K}^{\prime} \mathrm{Q}$
- $\mathrm{Q}^{+}=\mathrm{T} \oplus \mathrm{Q}=\mathrm{TQ} \mathrm{Q}^{\prime}+\mathrm{T}^{\prime} \mathrm{Q}$

Restrictions

- For S-R latch/flip-flop, S and R can not be 1 simultaneously
- For master-slave S-R flip-flop, S and R should not change during the half clock cycle preceding the active edge
- Setup and hold time constraints

