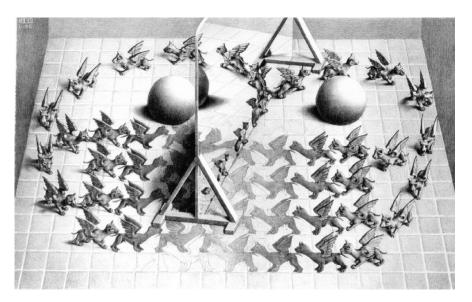
Switching Circuits & Logic Design

Jie-Hong Roland Jiang 江介宏

Department of Electrical Engineering National Taiwan University

Fall 2013

§13 Analysis of Clocked Sequential Circuits



Magic Mirror M.C. Escher, 1946

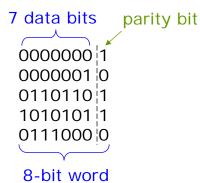
Outline

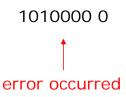
- A sequential parity checker
- Analysis by signal tracing and timing charts
- State tables and graphs
- General models for sequential circuits

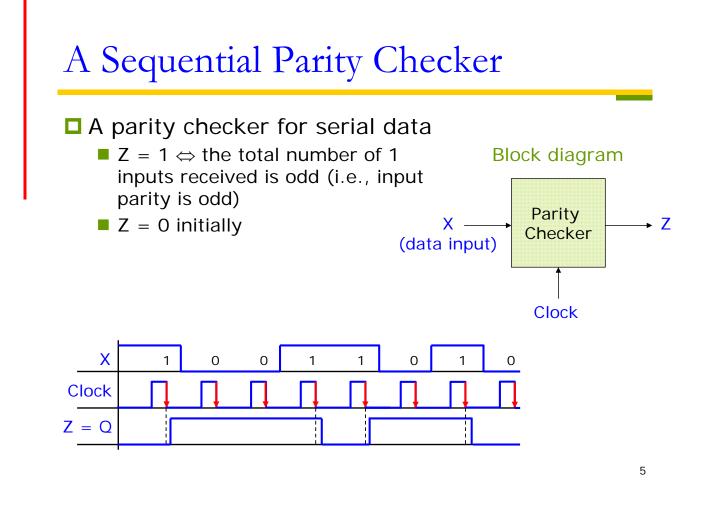
A Sequential Parity Checker

- When binary data is transmitted or stored, an extra bit (call a parity bit) is frequently added for the purposes of error detection
 - Odd (even) parity: the total number of 1's in the block, including the parity bit, is odd (even)

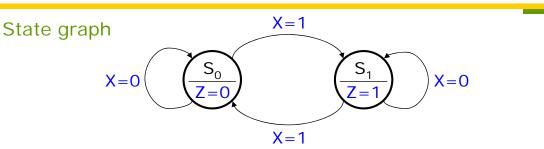
Example (8-bit words with odd parity)







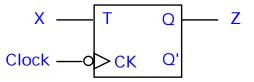
A Sequential Parity Checker



State table

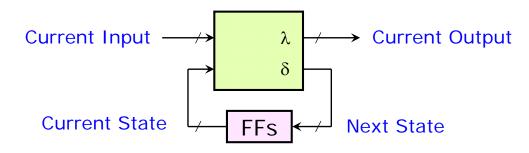
	Next State X=0 X=1		Q	-	2 + X=1	X=0	Г Х=1	Z
S ₀	$S_0 S_1$	0	0	0	1	0	1	0
S ₁	$S_1 S_0$		1	1	0	0	1	1

Logic circuit

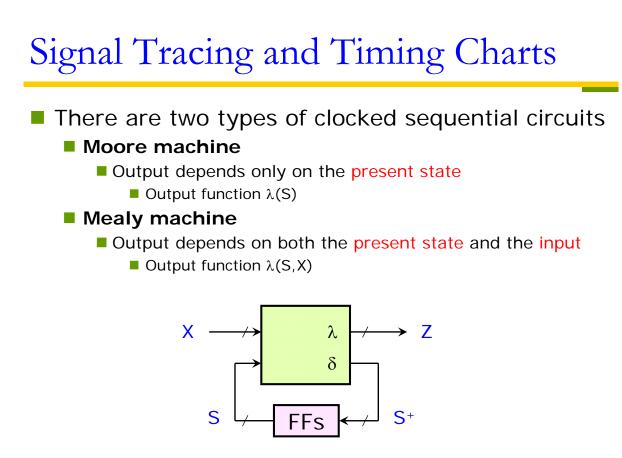


Signal Tracing and Timing Charts

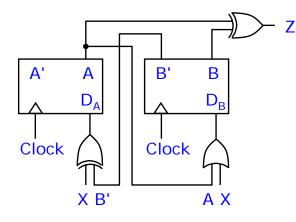
- □ Find the output sequence resulting from a given input sequence by tracing 0 and 1 signals through a circuit
 - 1. Assume an initial state of the flip-flops
 - 2. Given a current input at the present state, determine the circuit outputs and next state (flip-flop inputs)
 - 3. Update the present state to the next state, and repeat 2



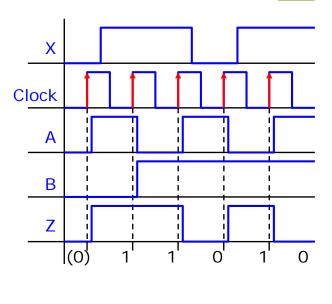
A sequential circuit with n FFs has 2ⁿ states



Signal Tracing and Timing Charts A Moore Sequential Circuit Example



Assume A=B=0 initially



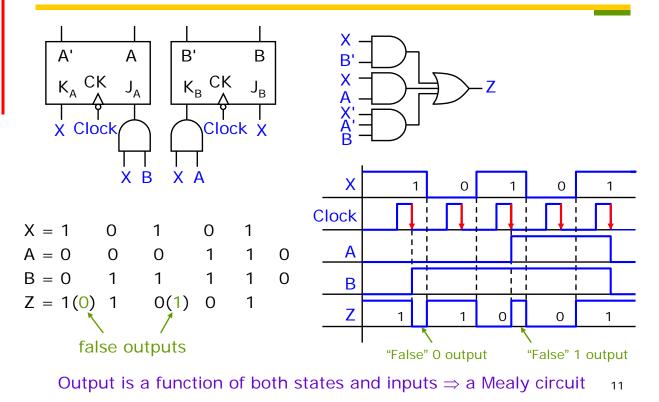
Output is a function of states only ⇒ a Moore circuit

Signal Tracing and Timing Charts Moore Sequential Circuit

For a Moore circuit, the output which results from application of a given input does not appear until after the active clock edge

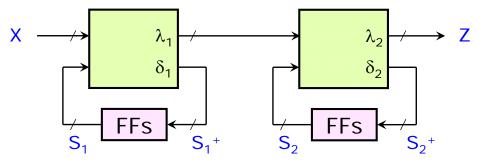
The output sequence is displaced in time with respect to the input sequence

Signal Tracing and Timing Charts A Mealy Sequential Circuit Example

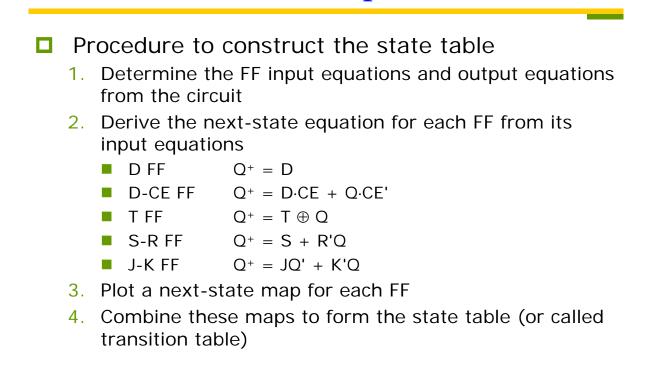


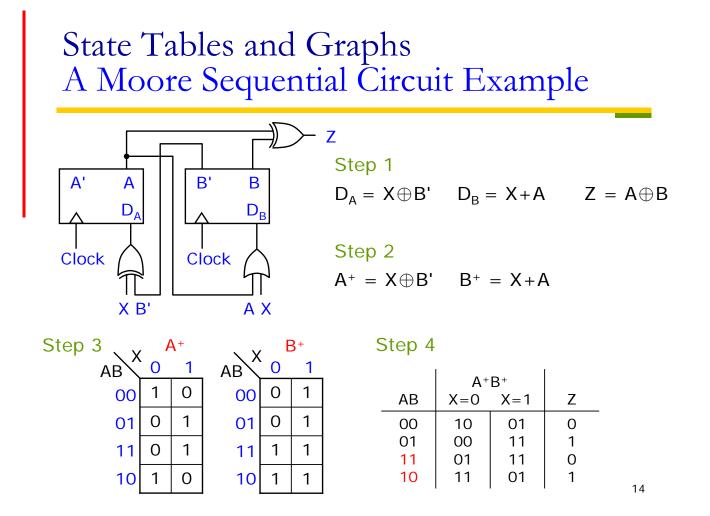
Signal Tracing and Timing Charts Mealy Sequential Circuit

- For a Mealy circuit, the output may temporarily assume an incorrect value (called a false output, glitch, spike)
 - The false output occurs after the circuit has changed state and before the input is changed; however, the correct output must appear before the active clock edge
 - No false output can appear in a Moore circuit
 - The output sequence is not displaced in time with respect to the input sequence
 - If the output of the circuit is fed into a second sequential circuit which uses the same clock, the false outputs will not cause any problem because the inputs to the second circuit can cause a change of state only at the active clock edge



State Tables and Graphs





State Tables and Graphs A Moore Sequential Circuit Example

State tables

	AB	A+ X=0	B+ X=1	z		Present State	Next X=0	State X=1	Present Output (Z)
_	00 01	10 00	01	0	- Symbolic representation	S ₀	S ₃	S ₁	0
	11	00	11	0		S_1 S_2	S ₀ S ₁	S_2 S_2	0
	10	11	01	1		S_3	S ₂	S_1	1

S.

 S_0

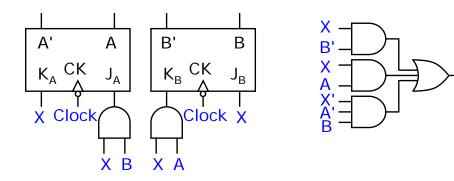
0

 S_{3}

State graph

15

State Tables and Graphs A Mealy Sequential Circuit Example



Steps 1,2 $A^{+} = J_{A}A' + K'_{A}A = XBA' + X'A$ $B^{+} = J_{B}B' + K'_{B}B = XB' + (AX)'B = XB' + X'B + A'B$ Z = X'A'B + XB' + XA

State Tables and Graphs A Mealy Sequential Circuit Example

Step 3

ABX	0	1	ABX	0	1	AB	0	1
00	0	0	00	0	1	00	0	1
01	0	1	01	1	1	01	1	0
11	1	0	11	1	0	11	0	1
10	1	0	10	0	1	10	0	1
	А	+		В	+		Z	

Step 4

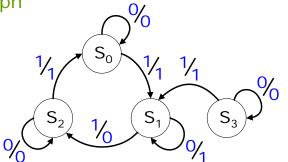
	A+	-B+		<u> </u>
AB	X=0	X = 1	X=0	X=1
00	00	01	0	1
01	01	11	1	0
11	11	00	0	1
10	10	01	0	1

17

State Tables and Graphs A Mealy Sequential Circuit Example

S	tate ta	ables							Pre	sent
	A	+B+		<u>Z</u>		Present	Next	State		tput
AE	X=0	X=1	X=0	X=1	_	State	X=0	X = 1	X=0	X=1
00	00	01	0	1	Symbolic	S ₀	S ₀	S_1	0	1
01	01	11	1	0	representation	S_1	S_1	S_2	1	0
11	11	00	0	1		S_2	S_2	S ₀	0	1
10	10	01	0	1		S ₃	S ₃	S ₁	0	1

State graph

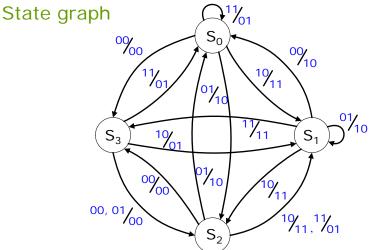


State Tables and Graphs A Serial Adder Example

						_		
Se	erial adder with D FF	Truth table	x _i	y _i	C _i	C _{i+1}	s _i	
x,	\rightarrow F_{ij} F_{ij} F_{ij}		0	0	0	0	0	
y,			0	0	1	0	1	
	Adder		0	1	0	0	1	
C	i C _{i+1}		0	1	1	1	0	
			1	0	0	0	1	
			1	0	1	1	0	
	Q' CK Clock		1	1	0	1	0	
			1	1	1	1	1	
Clo <u>ck</u>		State	gra		x _i y	′i∕s _i		
x _i y _i		00⁄_0,0	1/ ₁ ,1	1 ⁰ /1	11	, ⁰¹ /(, ¹⁰ /0	,11/ ₁
C _i C _{i+1}			(~	50		~	s_1	

State Tables and Graphs Example w/ Multiple Inputs & Outputs

State table	Present	Nex	t Sta	te		Present O	utput	(Z ₁ Z	<u>'</u> _)
	State	$X_1 X_2 = 00$	01	10	11	$X_1 X_2 = 00$	01	10	11
	S ₀	S ₃	S_2	S_1	S ₀	00	10	11	01
	S_1					10	10	11	11
	S_2	S ₃	S_0	S_1	S_1	00	10	11	01
	S_3	S_2	S_2	S_1	S ₀	00	00	01	01
_									

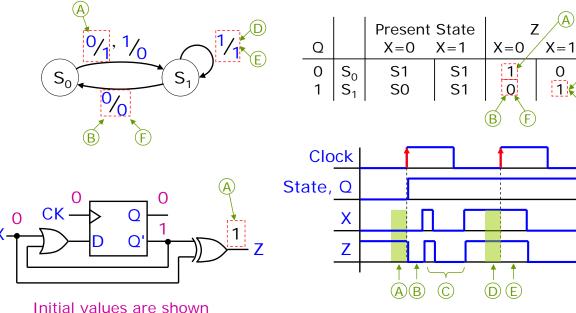


Given an initial state and an input sequence, we know the corresponding state trace and output sequence

00/

State Tables and Graphs Timing Charts

Construction and interpretation of timing charts

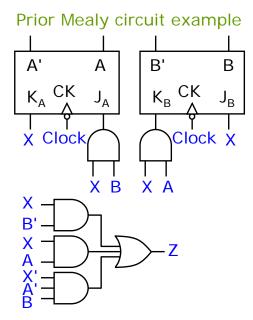


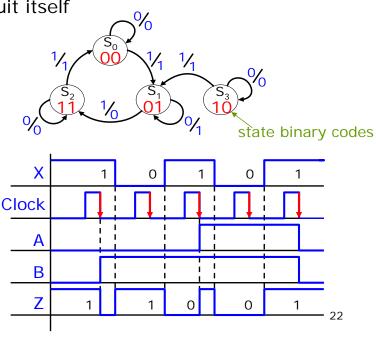
Read X and Z in shaded area 21

(F)

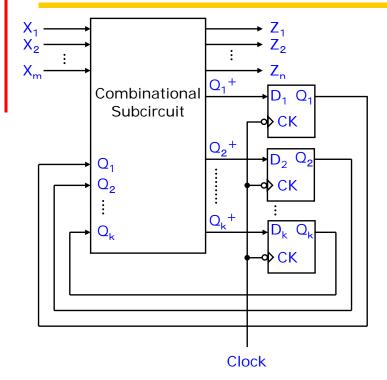
State Tables and Graphs Signal Tracing and Timing Charts

To plot a timing chart for a sequential circuit, the state graph (with states encoded in binary codes) can be a better reference than the circuit itself





General Models for Sequential Circuits Mealy Circuit Using D Flip-Flops



n output functions $Z_{1} = f_{1}(X_{1},...,X_{m},Q_{1},...,Q_{k})$ \vdots $Z_{n} = f_{n}(X_{1},...,X_{m},Q_{1},...,Q_{k})$

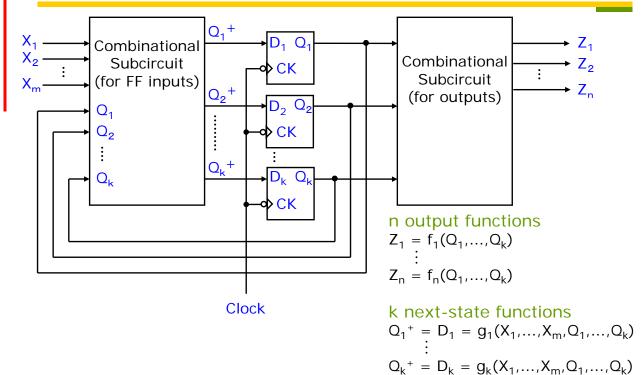
k next-state functions

$$Q_1^+ = D_1 = g_1(X_1,...,X_m,Q_1,...,Q_k)$$

 \vdots
 $Q_k^+ = D_k = g_k(X_1,...,X_m,Q_1,...,Q_k)$

23

General Models for Sequential Circuits Moore Circuit Using D Flip-Flops



General Models for Sequential Circuits Unary Representation

Example (prior example with multiple inputs and outputs)

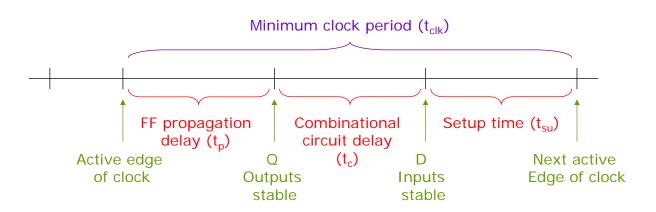
Present	Nex	kt Sta	ate		Present	Outp	out (Z)
State	X = 0	1	2	3	X = 0	1	2	3
S ₀	S_3	S_2	S_1	S ₀	0	2	3	1
S ₁	S ₀	S_1	S_2	S_3	2	2	3	3
S_2	S ₃	S_0	S_1	S_1	0	2	3	1
S_3	S ₂	S_2	S_1	S ₀	0	0	1	1

25

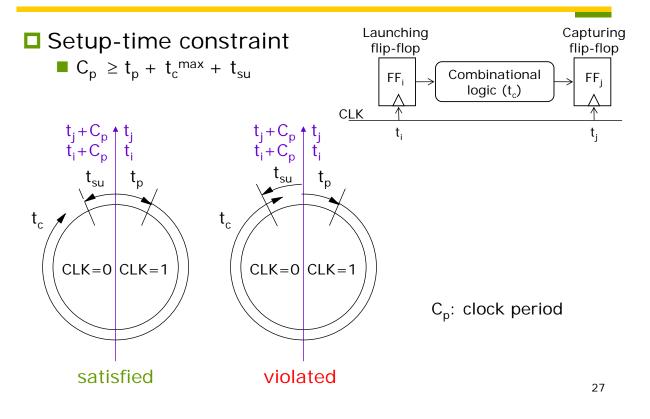
General Models for Sequential Circuits Minimum Clock Period

The minimum clock period

- t_{clk}(min) = t_x + t_c + t_{su}, where t_x is the time after the active clock edge at which the X inputs are stable
- $t_{clk}(min) = t_p + t_c + t_{su}$, if $t_x \le t_p$



General Models for Sequential Circuits Timing Constraints



General Models for Sequential Circuits Timing Constraints

□ Hold-time constraint ■ $t_p + t_c^{min} \ge t_h$

