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Outline

Elimination of redundant states
Equivalent states

Not in exam:
Determination of state equivalence using 

an implication table
Equivalent sequential circuits
State assignment
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Elimination of Redundant States

Example (§14.3)

Sequence 
DetectorX

(data input)
Z

Clock

Block diagram

Z=1  input sequence 
0101 or 1001 occurs

X = 0101  0010  1001  0100

Z = 0001 0000  0001 0000

Input/output sequence example

The circuit examines groups 
of 4 consecutive inputs, and 
resets after every 4 inputs
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Elimination of Redundant States

Mealy machine implementation (recap)

reset
0
1
01 or 10
010 or 100

S0

S1

S2

S3

S4

Sequence receivedState

(1) Partial graph (2) Complete state graph

two inputs received, no 1 output is possible
three inputs received, no 1 output is possible

S5

S6

Sequence receivedState
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Elimination of Redundant States

 State table for {0101, 1001} sequence detector
 Consider all possible input sequences of length four

X=1X=0X=1X=0

0
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0
1
0
0
0

0
0
0
0
0
0
0
0
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P
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0
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M
P
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0
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0
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Elimination of Redundant States
 If two states have the 

same next state and the 
same output under every 
possible input, then they 
are equivalent states (the 
converse is not true!)
 {H,I,K,M,N,P} and {J,L} 

are equivalent state sets
 For every equivalent state 

set, we can take any of its 
states as the  
representative and replace 
the other states with this 
representative
 E.g., take H for 

{H,I,K,M,N,P} and take J 
for {J,L} 

X=1X=0X=1X=0

0
0
1
0
1
0
0
0

0
0
0
0
0
0
0
0

A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A

H
I
J
K
L
M
N
P

000
001
010
011
100
101
110
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0
0
0
0

0
0
0
0

I
K
M
P
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J
L
N

D
E
F
G

00
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10
11

0
0

0
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E
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D
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00CBAreset

Present
OutputNext StatePresent

State
Input
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HH

J
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Elimination of Redundant States
 After substituting H for 

I,K,M,N,P, and 
substituting J for L, we 
see that {D,G} and 
{E,F} are again 
equivalent state sets 
 I.e., having the same 

next state and the 
same output under 
every possible input

 Taking D as the 
representative for 
equivalent state 
set{D,G} and E for 
{E,F}, we can eliminate 
rows of G and F 

X=1X=0X=1X=0

0
0
1
0
1
0
0
0

0
0
0
0
0
0
0
0

A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A

H
I
J
K
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N
P
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0
0
0
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0
0
0
0

I
K
M
P
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L
N

D
E
F
G

00
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0
0

0
0

E
G

D
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C

0
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00CBAreset

Present
OutputNext StatePresent
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Input

Sequence
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DE
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Elimination of Redundant States
 At the end of the above 

procedure, known as row 
matching, we have 7 
states A,B,C,D,E,H,J left
 These 7 states may or 

may not be equivalent
 Their equivalences need 

to be further determined 
by the method of §15.2 
and §15.3

 In this example, the 7 
states happen to be 
inequivalent

 Row matching is not 
sufficient to find all 
equivalent states (why?)
 It works however in the 

special case where the 
circuit resets to the 
starting state after 
receiving a fixed number 
of inputs (why?)

X=1X=0X=1X=0

0
0
1
0
1
0
0
0

0
0
0
0
0
0
0
0

A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A

H
I
J
K
L
M
N
P

000
001
010
011
100
101
110
111

0
0
0
0

0
0
0
0

I
K
M
P

H
J
L
N

D
E
F
G

00
01
10
11

0
0

0
0

E
G

D
F

B
C

0
1

00CBAreset

Present
OutputNext StatePresent

State
Input

Sequence

H
H
H
HH

J

DE

10

Elimination of Redundant States

Reduced state table and state graph

X=1X=0X=1X=0

0
0
0
0
0
0
1

0
0
0
0
0
0
0

C
E
D
H
H
A
A

B
D
E
H
J
A
A

A
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D
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H
J
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Equivalent States
 Two states are equivalent if there is no way of telling 

them apart through observation of the circuit inputs and 
outputs

 Consider two sequential circuits N1 and N2 (they may be 
different circuits or two copies of the same circuit), one 
starting in state p and one in state q
 If the output sequences Z1 and Z2 are the same (different) for 

every (some) input sequence X, then states p and q are 
equivalent (inequivalent)
we write Z1 = 1(p,X) and Z2 = 2(q,X)

(because the output sequence is a function of the initial state and 
the input sequence)

X
N1

N2

Z1

Z2

p

q
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Equivalent States
 Definition 15.1

Let N1 and N2 be sequential circuits (not necessarily different). Let 
X represent a sequence of inputs of arbitrary length. Then state p 
in N1 is equivalent to state q, denoted p  q, in N2 iff 1(p,X) = 
2(q,X) for every possible input sequence X.
 Symbol “” here is different from XNOR

 Theorem 15.1 (proof in Appendix D)
Two states p and q of a sequential circuit are equivalent iff for 
every single input X, the outputs are the same and the next states 
are equivalent, i.e., 

(p,X) = (q,X) and (p,X)  (q,X)
where (p,X) and (p,X) are the output and the next state, 
respectively, given the present state p and input X.
 Note that the next states don’t need to be the same (=) (used in row 

matching), but just equivalent ()
 E.g., D  G in the table of Slide 6, but their next states (H and N for X=0, 

and I and P for X=1) are not equal
 Row matching is a special case of Theorem 15.1
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Equivalent States

 Example (Table 13.4)
 Show no equivalent states

From the outputs, we know only S0 and S2 can possibly be 
equivalent. Moreover,

S0  S2 iff S3  S3, S2  S0, S1  S1, and S0  S1

But S0  S1 (because the outputs differ), so S0  S2

01
11
01
01

11

10
10
10
00

01

S0
S3
S1
S0

11

S2
S1
S0
S2

01

11
11
11
01

10X1X2 = 00

S3
S0
S3
S2

X1X2 = 00

00
10
00
00

S1
S2
S1
S1

S0
S1
S2
S3

10

Present Output (Z1Z2)Next State Present
State
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Determination of State Equivalence
(Not in Exam)

 Use an implication table (a pair chart) to check each 
pair of states for possible equivalence
 Non-equivalent pairs are systematically eliminated until only 

the equivalent pairs remain
 This chart has a square for every possible states; a square in 

column i and row j corresponds to state pair i-j

0
0
1
0
1
1
0
1

c
h
d
e
a
b
h
g

d
f
e
a
c
f
b
c

a
b
c
d
e
f
g
h

1X = 0

Present
Output

Next StatePresent
State 

a b c d e f g

b

c

d

e

f

g

h
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Determination of State Equivalence

 Example

0
0
1
0
1
1
0
1

c
h
d
e
a
b
h
g

d
f
e
a
c
f
b
c

a
b
c
d
e
f
g
h

1X = 0
Present
Output

Next StatePresent
State 

gfedcba

c-f
b-ga-gc-e

d-gh

a-b
e-hb-fb-d

c-hg

c-f
a-b

e-f
b-df

c-e
a-de

a-f
e-h

a-d
c-ed

c

d-f
c-hb a  b iff d  f and c  h

b  c since outputs differ
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Determination of State Equivalence

 Example (cont’d)

gfedcba

c-f
b-ga-gc-e

d-gh

a-b
e-hb-fb-d

c-hg

c-f
a-b

e-f
b-df

a-de

a-f
e-hc-ed

c

d-f
c-hb
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Determination of State Equivalence

 Example (cont’d)

gfedcba

c-f
b-ga-gc-e

d-gh

a-b
e-hb-fb-d

c-hg

c-f
a-b

e-f
b-df

a-de

a-f
e-hc-ed

c

d-f
c-hb

0
0
1
1
0
1

c
h
a
b
h
g

a
f
c
f
b
c

a
b
c
f
g
h

1X = 0
Present
Output

Next StatePresent
State 

Reduced State Table
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Equivalent Sequential Circuits
(Not in Exam)

 Definition 15.2
Sequential circuit N1 is equivalent to circuit N2 if 
for each state p in N1, there is a state q in N2
such that p  q, and conversely, for each state s 
in N2, there is a state t in N1 such that s  t

 If both N1 and N2 have a minimum number of 
states (i.e., state minimized) and N1  N2, then 
N1 and N2 must have the same number of states
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Equivalent Sequential Circuits

 Example

0
1
1
0

0
0
0
0

A
D
C
B

B
C
A
C

A
B
C
D

1X=0
N1

1X=0

1
0
0
1

0
0
0
0

S1

S0

S2

S3

S3

S3

S0

S2

S0

S1

S2

S3

1X=0
N2

1X=0

S3

S1

S0
1

0

1
1

0
0

0
0

0
0

S2

0
0

1
0

1
1
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Equivalent Sequential Circuits

 Example (cont’d)

DCBA

A-S2
C-S3

C-S2
D-S3

S3

C-S0
B-S2

B-S0
A-S2

S2

C-S3
B-S0

B-S3
A-S0

S1

A-S3
C-S1

C-S3
D-S1

S0

DCBA

A-S2
C-S3

C-S2
D-S3

S3

C-S0
B-S2

B-S0
A-S2

S2

C-S3
B-S0

B-S3
A-S0

S1

A-S3
C-S1

C-S3
D-S1

S0

S3

S1

S0
1

0

1
1

0
0

0
0

0
0

S2

0
0

1
0

1
1
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State Assignment
(Not in Exam)

 After the number of states in a state table has 
been reduced, the flip-flop input equations can 
be derived as follows
1. Perform state assignment (assign flip-flop state 

values to correspond to the states in the reduced table)
 The cost of the logic required to realize a sequential 

circuit is strongly dependent on the way this state 
assignment is made (subject of §15.7 ~ §15.9)

2. Construct a transition table which gives the next states 
of the flip-flops as a function of the present states and 
inputs

3. Derive the next-state maps from the transition table
4. Find flip-flop maps from the next-state maps using the 

techniques of §12 and find the flip-flop input equations 
from the maps


