
Switching Circuits & Logic Design

Jie-Hong Roland Jiang 江介宏

Department of Electrical Engineering National Taiwan University

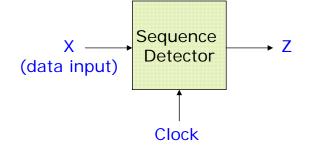
Fall 2013

§15 Reduction of State Tables, State Assignment

1

Outline

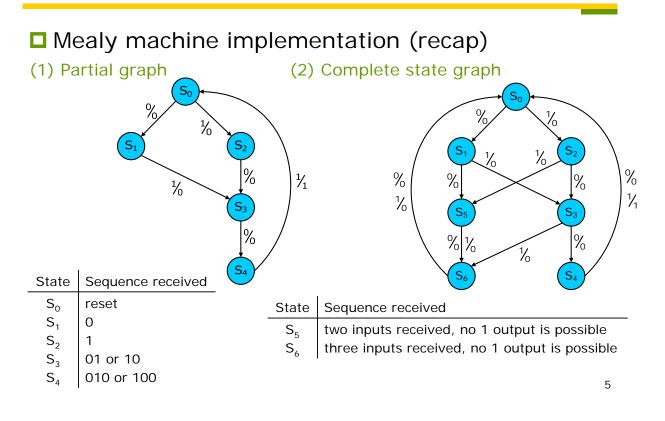
Elimination of redundant statesEquivalent states


Not in exam:

- Determination of state equivalence using an implication table
- Equivalent sequential circuits
- □ State assignment

Example (§14.3)

Block diagram


 $Z=1 \Leftrightarrow$ input sequence 0101 or 1001 occurs

The circuit examines groups of 4 consecutive inputs, and resets after every 4 inputs

Input/output sequence example

 3

Elimination of Redundant States

Elimination of Redundant States

State table for {0101, 1001} sequence detector

Consider all possible input sequences of length four

	•					
	Input	Present	Next State		Present Output	
1	Sequence	State	X=0	X = 1	X=0	X=1
	reset	А	В	С	0	0
0/ A $1/$	0	В	D	Е	0	0
0 0	1	С	F	G	0	0
	00	D	н	I	0	0
$0/ \mathbb{B}_{1/} 0/ \mathbb{C}_{1/}$	01	E	J	K	0	0
	10	F	L	М	0	0
	11	G	N	Р	0	0
$0/\mathcal{D}_{1/0} = 0/\mathcal{E}_{1/0} = 0/\mathcal{E}_{1/0} = 0/\mathcal{E}_{1/0} = 0/\mathcal{E}_{1/0}$	000	Н	Α	А	0	0
	001	I	Α	Α	0	0
	010	J	Α	Α	0	1
(H) (f) (f) (k) (f) (M) (N) (b)	011	K	Α	Α	0	0
	100	L	Α	Α	0	1
- \ \ \ - \ \ - \ \ - \ \ - \ \ - \ \ - \ \ - \ \ - \ \ - \ - \ - \ \ - \ \ - \ \ - \ - \ - \ \ - \ \ - \ - \ - \ - \ \ - \	101	M	Α	Α	0	0
0 0/1/	110	N	A	Α	0	0
A 6 , 1	111	Р	A	Α	0	0 6

Elimination of Redundant States

Input	Present	Next State		Present Output	
Sequence	State	X=0	X = 1	X = 0	X=1
reset	А	В	С	0	0
0	В	D	Е	0	0
1	С	F	G	0	0
00	D	Н	ЖH	0	0
01	E	J	ЖН	0	0
10	F	КJ	МH	0	0
11	G	N.H	RН	0	0
000	H	А	А	0	0
-001		A	A	0	0
010	J	А	А	0	1
-011	К	A	A	0	0
-100	L	A	A	0	-1-
-101	M	A	A	0	0
-110	N	A	A	0	0
-111	P	A	A	0	0

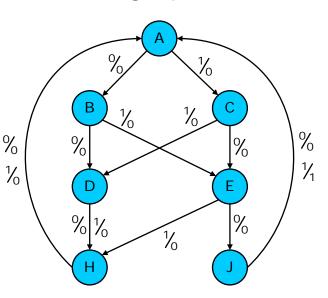
- If two states have the same next state and the same output under every possible input, then they are equivalent states (the converse is not true!)
 - {H,I,K,M,N,P} and {J,L} are equivalent state sets
- For every equivalent state set, we can take any of its states as the representative and replace the other states with this representative
 - E.g., take H for {H,I,K,M,N,P} and take J for {J,L}

Elimination of Redundant States

Input	Present	Next State		Present Output	
Sequence	State	X=0	X = 1	X = 0	X=1
reset	А	В	С	0	0
0	В	D	Е	0	0
1	С	ΎЕ	СD	0	0
00	D	Н	×н	0	0
01	E	J	ЖH	0	0
	F	- K -J	MH	0	-0-
	G	N.H	RH	0	0
000	H	А	А	0	0
-001		A	A	0	0
010	J	А	А	0	1
-011	К	A	A	0	0
	L	A	A	0	-1-
- 101	M	A	A	0	0
-110	N	A	A	0	0
		A	A	0	0

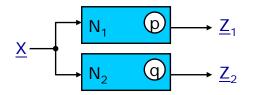
- After substituting H for I,K,M,N,P, and substituting J for L, we see that {D,G} and {E,F} are again equivalent state sets
 - I.e., having the same next state and the same output under every possible input
- Taking D as the representative for equivalent state set{D,G} and E for {E,F}, we can eliminate rows of G and F

7


Elimination of Redundant States

Input	Present	Next S	State	_	sent tput	At the end of the above procedure, known as row
Sequence	State	X=0	X = 1	X=0	X=1	matching, we have 7
reset	A	В	С	0	0	states A,B,C,D,E,H,J left
0	В	D	Е	0	0	These 7 states may or may not be equivalent
1	С	Ϋ́Ε	<u>C</u> D	0	0	Their equivalences need
00	D	Н	ЖH	0	0	to be further determined by the method of §15.2
01	E)	J	ЖH	0	0	and §15.3
	Ē	<u></u> ⊁J	MH	0	-0-	In this example, the 7 states happen to be
	G	NH	RH	0	0	inequivalent
000	H	Α	А	0	0	Row matching is not sufficient to find all
-001	Ī	A	A	0	0	equivalent states (why?)
010	J	А	А	0	1	It works however in the
-011	К	A	A	0	0	special case where the circuit resets to the
-100	L	A	A	0	_1_	starting state after
- 101	<u> </u>	A	A	0	0	receiving a fixed number
-110	N	A	A	0	0	of inputs (why?)
	P	A	A	0	-0-	. 9

Elimination of Redundant States


Reduced state table and state graph

Present	Next State		Out		
State	X = 0	X = 1	X=0	X = 1	
А	В	С	0	0	-
В	D	Е	0	0	
С	Е	D	0	0	
D	Н	Н	0	0	
E	J	Н	0	0	
Н	А	А	0	0	
J	Α	Α	0	1	_

Equivalent States

- Two states are equivalent if there is no way of telling them apart through observation of the circuit inputs and outputs
- Consider two sequential circuits N₁ and N₂ (they may be different circuits or two copies of the same circuit), one starting in state p and one in state q
 - If the output sequences <u>Z</u>₁ and <u>Z</u>₂ are the same (different) for every (some) input sequence <u>X</u>, then states p and q are equivalent (inequivalent)
 - we write $\underline{Z}_1 = \lambda_1(p, \underline{X})$ and $\underline{Z}_2 = \lambda_2(q, \underline{X})$ (because the output sequence is a function of the initial state and the input sequence)

11

Equivalent States

Definition 15.1

Let N₁ and N₂ be sequential circuits (not necessarily different). Let <u>X</u> represent a sequence of inputs of arbitrary length. Then state p in N₁ is **equivalent** to state q, denoted $p \equiv q$, in N₂ iff $\lambda_1(p, \underline{X}) = \lambda_2(q, \underline{X})$ for every possible input sequence <u>X</u>.

Symbol "≡" here is different from XNOR

Theorem 15.1 (proof in Appendix D)

Two states p and q of a sequential circuit are equivalent iff for every single input X, the outputs are the same and the next states are equivalent, i.e.,

 $\lambda(p,X) = \lambda(q,X)$ and $\delta(p,X) \equiv \delta(q,X)$ where $\lambda(p,X)$ and $\delta(p,X)$ are the output and the next state, respectively, given the present state p and input X.

- Note that the next states don't need to be the same (=) (used in row matching), but just equivalent (=)
 - E.g., D = G in the table of Slide 6, but their next states (H and N for X=0, and I and P for X=1) are not equal
 - Row matching is a special case of Theorem 15.1

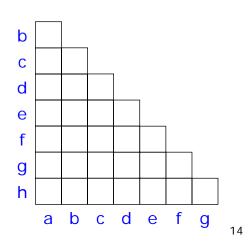
Equivalent States

Example (Table 13.4)

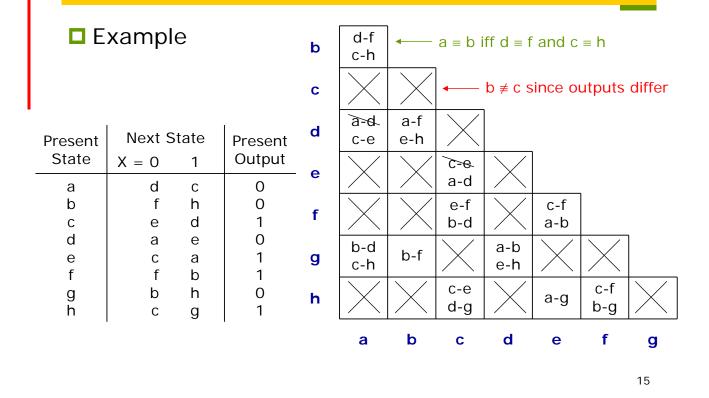
Show no equivalent states

Present	Nex	t Sta	te		Present C)utpu [.]	t (Z ₁ Z	(₂)
State	$X_1 X_2 = 00$	01	10	11	$X_1 X_2 = 00$	01	10	11
S ₀	S ₃	S_2	S_1	S ₀	00	10	11	01
S ₁	S ₀	S_1	S_2	S_3	10	10	11	11
S ₂	S ₃	S ₀	S_1	S_1	00	10	11	01
S ₃	S ₂	S_2	S_1	S ₀	00	00	01	01

From the outputs, we know only S₀ and S₂ can possibly be equivalent. Moreover,

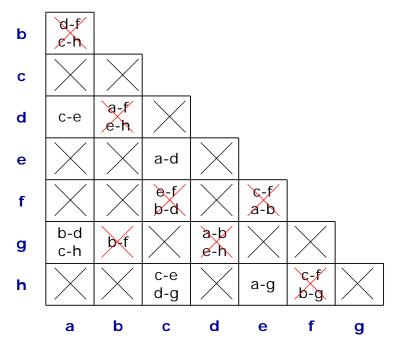

$$\begin{split} S_0 &\equiv S_2 \text{ iff } S_3 \equiv S_3, \ S_2 \equiv S_0, \ S_1 \equiv S_1, \text{ and } S_0 \equiv S_1 \\ \text{But } S_0 &\not\equiv S_1 \text{ (because the outputs differ), so } S_0 \not\equiv S_2 \end{split}$$

13

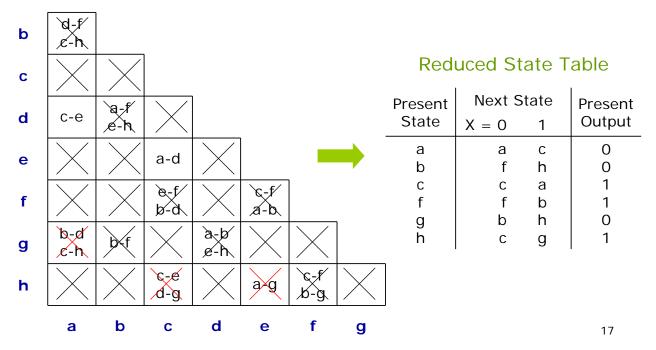

Determination of State Equivalence (Not in Exam)

- Use an implication table (a pair chart) to check each pair of states for possible equivalence
 - Non-equivalent pairs are systematically eliminated until only the equivalent pairs remain
 - This chart has a square for every possible states; a square in column i and row j corresponds to state pair i-j

Present	Next S	Present	
State	X = 0	1	Output
а	d	С	0
b	f	h	0
С	е	d	1
d	а	е	0
е	С	а	1
f	f	b	1
g	b	h	0
h	С	g	1



Determination of State Equivalence

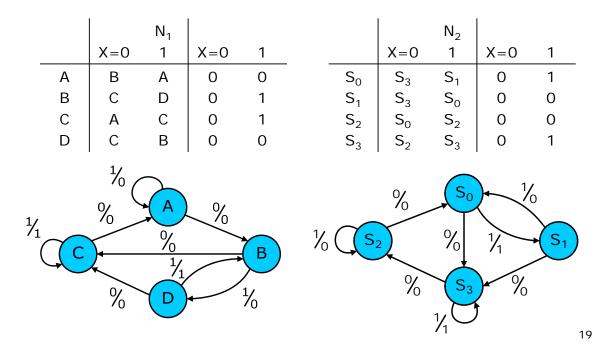

Determination of State Equivalence

Example (cont'd)

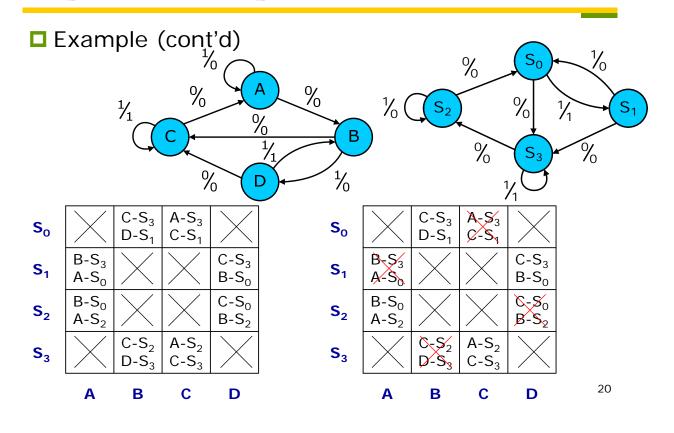
Determination of State Equivalence

Example (cont'd)

Equivalent Sequential Circuits (Not in Exam)


Definition 15.2

Sequential circuit N_1 is **equivalent** to circuit N_2 if for each state p in N_1 , there is a state q in N_2 such that $p \equiv q$, and conversely, for each state s in N_2 , there is a state t in N_1 such that $s \equiv t$


If both N₁ and N₂ have a minimum number of states (i.e., state minimized) and N₁ ≡ N₂, then N₁ and N₂ must have the same number of states

Equivalent Sequential Circuits

Example

Equivalent Sequential Circuits

State Assignment (Not in Exam)

- After the number of states in a state table has been reduced, the flip-flop input equations can be derived as follows
 - 1. Perform **state assignment** (assign flip-flop state values to correspond to the states in the reduced table)
 - The cost of the logic required to realize a sequential circuit is strongly dependent on the way this state assignment is made (subject of §15.7 ~ §15.9)
 - Construct a transition table which gives the next states of the flip-flops as a function of the present states and inputs
 - 3. Derive the next-state maps from the transition table
 - 4. Find flip-flop maps from the next-state maps using the techniques of §12 and find the flip-flop input equations from the maps