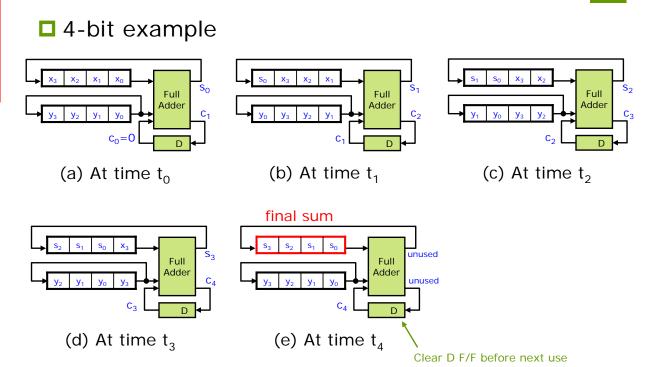

Switching Circuits & Logic Design

Jie-Hong Roland Jiang 江介宏

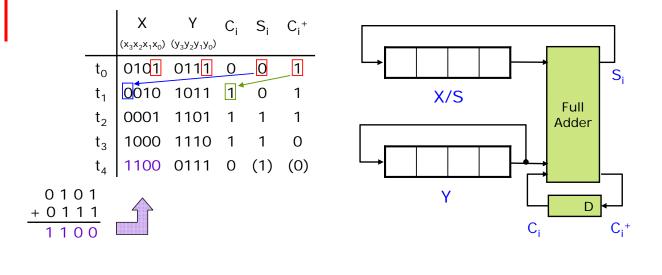
Department of Electrical Engineering National Taiwan University

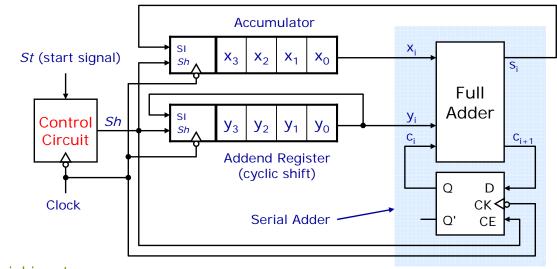
Fall 2013



Outline

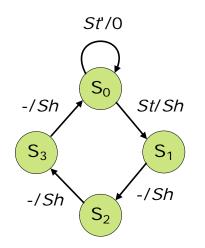
How to use a sequential circuit to control a sequence of operations in a digital system


Serial adder with accumulatorDesign of a parallel multiplier


Serial Adder with Accumulator Operation

4-bit example

Serial Adder with Accumulator

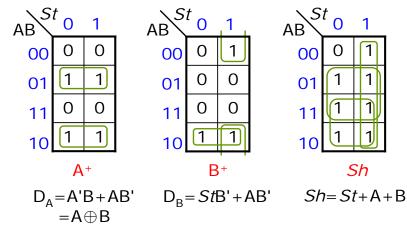

Block diagram

SI: serial input St: start signal control signals Sh: shift signal

Serial Adder with Accumulator Control Circuit Design

State graph and state table

	Next S	tate	Sh			
	St = 0	1	St = 0	1		
S ₀	S ₀	S ₁	0	1		
S ₀ S ₁	S ₀ S ₂ S ₃ S ₀	S_2	1	1		
S_2	S_3	S_3	1	1		
S_2 S_3	S ₀	S ₀	1	1		


Shift 4 times after St is activated

Serial Adder with Accumulator Control Circuit Design

Derivation of control circuit equations

Transition table

	AB	A+B+			
		<i>St</i> = 0	1		
S ₀	00	00	01		
S_1	01	10	10		
S_2	10	11	11		
S_0 S_1 S_2 S_3	11	00	00		
	D				
State Assignment					

7

St 0

0

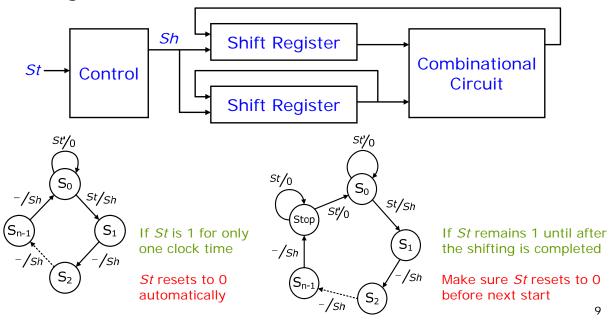
1

1

1

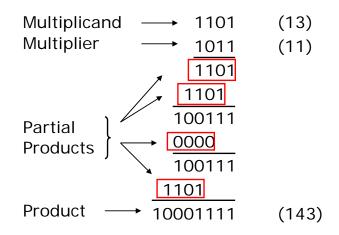
1

1

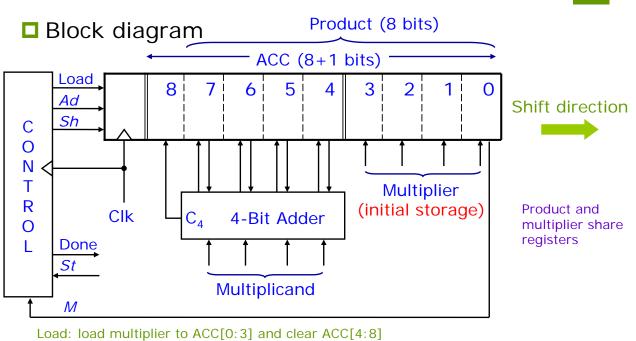

1

1

Sh


Serial Adder with Accumulator Typical Serial Processing Unit

Typical serial processing unit with n-bit shift registers

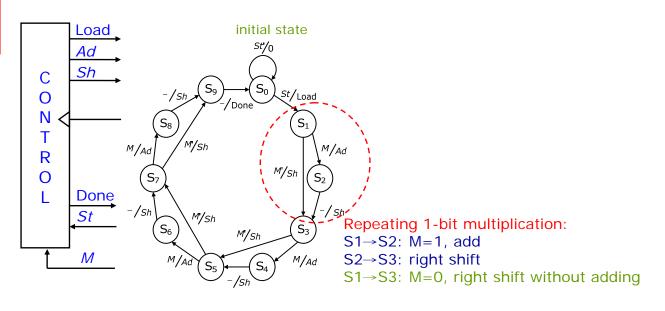


Design of a Parallel Multiplier

- Design a parallel adder for positive binary numbers
 - Require only shifting and adding
 - Add two binary numbers at a time

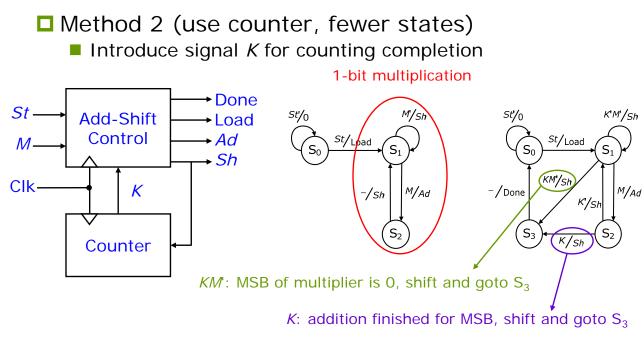
Design of a Parallel Multiplier Parallel Binary Multiplier

Load: load multiplier to ACC[0:3] and clear ACC[4:8] Ad: add signal (to store adder outputs in ACC[4:7] and C₄ in ACC[8]) Sh: shift the ACC contents one place to the right M: current multiplier bit


Design of a Parallel Multiplier Parallel Binary Multiplier

Operation example	{product, multiplier}				
initial contents of product register	0 0 0 0 0 1 0 1 <mark>1 ←</mark> M (11)				
(add multiplicand because M = 1)	1101 (13)				
after addition	011011011				
after shift	0 0 1 1 0 1 1 0 1 ←M				
(add multiplicand because M = 1)	1101				
after addition	100111101				
after shift	0 1 0 0 1 1 1 1 <mark>0 ←</mark> M				
(skip addition because $M = 0$)					
after shift	0 0 1 0 0 1 1 1 1 ① ← M				
(add multiplicand because $M = 1$)	1101				
after addition	100011111				
after shift (final answer)	010001111 (143)				

Dividing line between product and multiplier


Design of a Parallel Multiplier Control Circuit Design

Method 1 (direct implementation)

13

Design of a Parallel Multiplier Control Circuit Design

How many states in total (including add-shift control and counter)?

Design of a Parallel Multiplier Control Circuit Design

Method 2 (cont'd)

Operation example for 1101×1011

Time	State	Counter	Product Register	St	М	К	Load	Ad	Sh	Done
t _o	S ₀	00	000000000	0	0	0	0	0	0	0
t ₁	S ₀	00	00000000	1	0	0	1	0	0	0
t ₂	S ₁	00	000001011	0	1	0	0	1	0	0
t ₃	S_2	00	011011011	0	1	0	0	0	1	0
t ₄	S ₁	01	001101101	0	1	0	0	1	0	0
t ₅	S ₂	01	100111101	0	1	0	0	0	1	0
t ₆	S ₁	10	010011110	0	0	0	0	0	1	0
t ₇	S ₁	11	001001111	0	1	1	0	1	0	0
t ₈	S ₂	11	100011111	0	1	1	0	0	1	0
t ₉	S_3	00	010001111	0	1	0	0	0	0	1