Switching Circuits \＆ Logic Design

Jie－Hong Roland Jiang
江介宏
Department of Electrical Engineering National Taiwan University

Fall 2013

§18 Circuits for Arithmetic Operations

a
a（0）
（1）
（2）
（3）
（4）

Outline

How to use a sequential circuit to control a sequence of operations in a digital system
\square Serial adder with accumulator
aDesign of a parallel multiplier

Serial Adder with Accumulator Operation

\square 4-bit example

(a) At time t_{0}

(d) At time t_{3}

(b) At time t_{1}

(c) At time t_{2}

(e) At time t_{4}

Serial Adder with Accumulator Operation

\square 4-bit example

	X	Y	C_{i}	S_{i}	C_{i}^{+}
	$\left(x_{3} x_{2} x_{1} x_{0}\right)$	$\left(y_{3} y_{2} y_{1} y_{0}\right)$			
t_{0}	0101	$011 \mathbf{1}$	0	0	1
t_{1}	0010	1011	1	0	1
t_{2}	0001	1101	1	1	1
t_{3}	1000	1110	1	1	0
t_{4}	1100	0111	0	(1)	(0)

Serial Adder with Accumulator

Block diagram

SI: serial input
$\left.\begin{array}{l}\text { St: start signal } \\ \text { Sh: shift signal }\end{array}\right\}$ control signals

Serial Adder with Accumulator Control Circuit Design

\square State graph and state table

	Next State		Sh	
	St $=0$	1	$\mathrm{St}=0$	1
$\mathrm{~S}_{0}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{1}$	0	1
$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{2}$	1	1
$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{3}$	1	1
$\mathrm{~S}_{3}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{0}$	1	1

Shift 4 times after St is activated

Serial Adder with Accumulator Control Circuit Design

\square Derivation of control circuit equations

Transition table

	AB	$\mathrm{A}^{+} \mathrm{B}^{+}$	
		$\mathrm{St}=0$	1
$\mathrm{~S}_{0}$	00	00	01
$\mathrm{~S}_{1}$	01	10	10
$\mathrm{~S}_{2}$	10	11	11
$\mathrm{~S}_{3}$	11	00	00

State Assignment

$B^{\text {St }}$		1
00	0	0
01	1	1
11	0	0
10	1	1

$D_{A}=A^{\prime} B+A B^{\prime}$ $=A \oplus B$

$D_{B}=S t B^{\prime}+A B^{\prime} \quad S h=S t+A+B$

Serial Adder with Accumulator Typical Serial Processing Unit

\square Typical serial processing unit with n-bit shift registers

If St remains 1 until after
the shifting is completed
Make sure St resets to 0 before next start

Design of a Parallel Multiplier

\square Design a parallel adder for positive binary numbers

Require only shifting and adding

- Add two binary numbers at a time

Multiplicand
Multiplier

$\left.\begin{array}{l}\text { Partial } \\
\text { Products }\end{array}\right\} \longrightarrow \frac{1001}{\frac{1101}{100111}}$
Product $\longrightarrow \frac{1101}{10001111}$

Design of a Parallel Multiplier Parallel Binary Multiplier

Load: Ioad multiplier to ACC[0:3] and clear ACC[4:8]
Ad: add signal (to store adder outputs in ACC[4:7] and C_{4} in $\left.A C C[8]\right)$
Sh: shift the ACC contents one place to the right
M: current multiplier bit

Design of a Parallel Multiplier Parallel Binary Multiplier

\square Operation example
initial contents of product register $000001011\left(\begin{array}{ll}1 \\ \hline\end{array}\right.$
(add multiplicand because $M=1$)
after addition
1101
011011011
after shift
(add multiplicand because $\mathrm{M}=1$)
after addition
after shift
(skip addition because $\mathrm{M}=0$)
after shift
(add multiplicand because $\mathrm{M}=1$)
after addition
after shift (final answer)

Design of a Parallel Multiplier Control Circuit Design

\square Method 1 (direct implementation)

Design of a Parallel Multiplier Control Circuit Design

\square Method 2 (use counter, fewer states)
■ Introduce signal K for counting completion

K: addition finished for MSB, shift and goto S_{3}

Design of a Parallel Multiplier Control Circuit Design

- Method 2 (cont'd)

Operation example for 1101×1011

Time	State	Counter	Product Register	St	M	K	Load	Ad	Sh	Done
t_{0}	$\mathrm{~S}_{0}$	00	000000000	0	0	0	0	0	0	0
t_{1}	$\mathrm{~S}_{0}$	00	000000000	1	0	0	1	0	0	0
t_{2}	$\mathrm{~S}_{1}$	00	000001011	0	1	0	0	1	0	0
t_{3}	$\mathrm{~S}_{2}$	00	011011011	0	1	0	0	0	1	0
t_{4}	$\mathrm{~S}_{1}$	01	001101101	0	1	0	0	1	0	0
t_{5}	$\mathrm{~S}_{2}$	01	100111101	0	1	0	0	0	1	0
t_{6}	$\mathrm{~S}_{1}$	10	010011110	0	0	0	0	0	1	0
t_{7}	$\mathrm{~S}_{1}$	11	001001111	0	1	1	0	1	0	0
t_{8}	$\mathrm{~S}_{2}$	11	100011111	0	1	1	0	0	1	0
t_{9}	$\mathrm{~S}_{3}$	00	010001111	0	1	0	0	0	0	1

