Introduction
to
Logic Synthesis with ABC

Alan Mishchenko

UC Berkeley

Overview

(1) Problems in logic synthesis
— Representations and computations

(2) And-Inverter Graphs (AIGS)
— The foundation of innovative synthesis

(3) AlG-based solutions

— Synthesis, mapping, verification

(4) Introduction to ABC

— Differences, fundamentals, programming

(5) Programming assignment

(1) Problems in Synthesis

What are the objects to be “synthesized”?

— Logic structures

— Boolean functions (with or without don’t-cares)

— State machines, relations, sets, etc.

How to represent them efficiently?

— Depends on the task to be solved

— Depends on the size of an object

How to create, transform, minimize the representations?
— Multi-level logic synthesis

— Technology mapping

How to verify the correctness of the design?
— Gate-level equivalence checking

— Property checking

— Etc.

Terminology

» Logic function (e.g. F = ab+cd)
— Variables (e.g. b)
— Minterms (e.g. abcd)

— Cube (e.g. ab) Fjrirriryflftﬁuﬁs |

* Logic network /
— Primary inputs/outputs / Fanouts
— Logic nodes \ |
— Fanins/fanouts \F\amns
— Transitive fanin/fanout cone < THL

T T T T T T T T T T TT]
— Cut and window (defined later) Primary inputs

Logic (Boolean) Function

« Completely specified

logic function

* Incompletely specified

logic function

00
01
11
10

00

01

11

OoO|lr,r|O|O
Ol |O]|O
Rrlrlo]|r
[l Neoll No il N

10

On-set

ab
00 01 11 10
cd wlololz1]o
orlof|o|1]o0
ml1f1f1]1
wjofof1]o
ab
00 01 11 10
cd o ofof1]o0
ool -] -] -
11 1 1 1 _
wlofof1]o
00 01 11 10 00 01 11 10
11|01 coflojo|o |oO
1lo|ofo orfo|1]|1]1
olofo]o 1mlolofol|1
11101 wjo|lofofo
5
Off-set DC-set

Relations

« Relation (al,a2) — (b1,b2)

— (0,0) - (0,0)

- (0,1) -» (1,0)(0,1)

- (1,00 > (1,1
- (1,1) > (1,0

« FSM

Characteristic function

al a2
00 01 11 10
bl b2
ofi1]lo0|l0]oO0
01 0 1 0 0
110 0 0 1
wflofl1]11fo0
Current
state
00 01 11 10
Next owl1 111 -10
state
1|1 -11
11 — - — —
10 1 0 - 0

Representation Zoo

Find each of these representations? abed

e Truth table (TT) 4 0000

* Sum-of-products (SOP) 0001

* Product-of-sums (POS) 0010

&
« Binary decision diagram (BDD) 0011
* And-inverter graph (AIG) 0100
* Logic network (LN) 0101
E E 0110

@ 0111

1000

1001

F = ab+cd

1010

1011

1100

1101

PPl |P|]O|lO|lO |, |O|J|OCO|O |, |J]O|JlO|lO T

7/ 1111

F = (a+c)(a+d)(b+c)(b+d) /s 110

Representation Overview

o TT are the natural representation of logic functions
— Not practical for large functions
— Sitill good for functions up to 16 variables

e SOP is widely used in synthesis tools since 1980’s
— More compact than TT, but not canonical

— Can be efficiently minimized (SOP minimization by Espresso, ISOP
computation) and translated into multi-level forms (algebraic factoring)

 BDD is a useful representation discovered around 1986
— Canonical (for a given function, there is only one BDD)
— Very good, but only if (a) it can be constructed, (b) it is not too large
— Unreliable (non-robust) for many industrial circuits
* AIG is an up-and-coming representation!
— Compact, easy to construct, can be made “canonical” using a SAT solver
— Unifies the synthesis/mapping/verification flow
— The main reason to give this talk ©

Historical Perspective

Problem Size ABC
100000
SIS, VIS,
MVSIS
100
Espresso,
50 MIS, SIS
16

1950-1970 1980 1990 2000 Time

What Representation to Use?

e For small functions (up to 16 inputs)
— TT works the best (local transforms, decomposition, factoring, etc.)
e For medium-sized functions (16-100 inputs)
— In some cases, BDDs are still used (reachability analysis)
— Typically, it is better to represent as AlGs
» Translate AIG into CNF and use SAT solver for logic manipulation
— Sometimes need interpolation or SAT assignment enumeration
* For large industrial circuits (>100 inputs, >10,000 gates)
— Traditional LN representation is not efficient
— AIGs work remarkably well
» Lead to efficient synthesis
» Are a natural representation for technology mapping
» Easy to translate into CNF for SAT solving
» Etc.

10

What are Typical Transformations?

« Typical transformations of representations
— For SOP, minimize cubes/literals
— For BDD, minimize nodes/width
— For AIG, restructure, minimize nodes/levels
— For LN, restructure, minimize area/delay

11

Algorithmic Paradigms

* Divide-and-conquer

— Traversal, windowing, cut computation
e Guess-and-check

— Bit-wise simulation
 Reason-and-prove

— Boolean satisfiability

12

Traversal

* Traversal is visiting nodes in

. Primary outputs
the network in some order y oulp

8)
« Topological order visits)
nodes from PIs to POs ©)
— Each node is visited after its
fanins are visited @)
O | ®
* Reverse topological order visits @)
nodes from POs to Pls
— Each node is visited after its Frn _l | l_l R
fanouts are visited Primary inputs

Traversal in a topological order
13

Windowing

» Definition
— A window for a node is the
node’s context, in which an
operation is performed
A window includes
— k levels of the TFI
— m levels of the TFO

— all re-convergent paths
between window PlIs and
window POs

14

Structural Cuts in AlIG

A cut of a node n is a set of
nodes in transitive fan-in

such that
every path from the node to Pls
Is blocked by nodes in the cut.

A k-feasible cut means the size

of the cut must be k or less. The set {p, b, c} is a 3-feasible cut of

node n. (It is also a 4-feasible cut.)

k-feasible cuts are important in FPGA mapping because the logic between
root n and the cut nodes {p, b, c} can be replaced by a k-LUT

15

Cut Computation

{{n}, }
jll n

ﬂ (P} (a by {{q} k | Cuts per
p node

o /’.\ ﬂ\ 4 6
Computation is
done bottom-up > 20
{{a}} {{b}} {{c}} 6| 80
7 150

e o

The set of cuts of a node is a ‘cross product’ of the sets of cuts of its children.
Any cut that is of size greater than k is discarded.

(P. Pan et al, FPGA '98; J. Cong et al, FPGA '99) 16

Bitwise Simulation

Assign particular (or random) values
at the primary inputs
— Multiple simulation patterns are
packed into 32- or 64-bit strings

Perform bitwise simulation at each
node

— Nodes are ordered in a topological
order

Works well for AIG due to
— The uniformity of AND-nodes
— Speed of bitwise simulation

— Topological ordering of memory used
for simulation information

17

Boolean Satisfiability

* Given a CNF formula o(x), satisfiability problem is

to prove that ¢(x) = 0, or to find a counter-example
X" such that p(x’) =1

Why this problem arises?

— If CNF were a canonical representation (like BDD), it would be
trivial to answer this question.

— But CNF is not canonical. Moreover, CNF can be very
redundant, so that a large formula is, in fact, equivalent to 0.

— Looking for a satisfying assignment can be similar to searching
for a needle in the hay-stack.

— The problem may be even harder, if there is no needle there!

18

Example (Deriving CNF)

CNF
@0\ o]0 [0
/| 1]Q]0
o\@ o0
0|0 O\
19
e SAT solver types * Aot of magic is used to build an
— CNF-based, circuit-based efficient SAT solver
— Complete, incomplete — Two literal clause watching
— DPLL, saturation, etc. — Conflict analysis with clause
recording
- Applications in EDA — Nor_l-chronological bac.ktr_acking
_ Verification — Variable ordering heuristics

. . — Random restarts, etc
» Equivalence checking

* Model checking
— Synthesis * The best SAT solver is MiniSAT

« Circuit restructuring (http://minisat.se/)

« Decomposition - EfflClent (WOI’I. many competitions)
« False path analysis — Simple (60%-“%5 gf codeij
— Routing - Easy to mo Ify and exten

— Integrated into ABC 20

Example (SAT Solving)

EZ : E : i)c) / \
. . b
Eaa++ctir-tj) 7 / \

. C C c
e ANV ANAN
(=b + ¢ + -d) d /d N /d d\ /

(=b + -c +d)

0O N O O & WODN B

Courtesy Karem Sakallah, University of Michigan 21

(2) And-Inverter Graphs (AIG)

Definition and examples

Several simple tricks that make AlGs work
Sequential AlGs

Unifying representation

A typical synthesis application: AlG rewriting

22

AlG Definition and Examples

AIG is a Boolean network composed of two-input ANDs and inverters.

w2 00 01 11 10
00 0 0 0 é\
or]l o | o[l]
/ /O 6 nodes
| | a b d
1fo 0 \O}}\\ 4 levels
100]ofl]Jlo < o
/ /N
a c¢c b c
w2 00 01 11 10
ool o |o|T]0) /g\
0110 0 O o 7 nodes
11] 0 0 / 3
/O\ evels
100 [‘Q—J 0 a ¢ b d b c¢ca d 23

Three Simple Tricks

Structural hashing
— Makes sure AIG is stored in a compact form
— Is applied during AlG construction
« Propagates constants
» Makes each node structurally unique
Complemented edges
— Represents inverters as attributes on the edges
* Leads to fast, uniform manipulation
» Does not use memory for inverters
* Increases logic sharing using DeMorgan’s rule
Memory allocation
— Uses fixed amount of memory for each node
» Can be done by a simple custom memory manager
» Even dynamic fanout manipulation is supported!
— Allocates memory for nodes in a topological order
» Optimized for traversal in the same topological order
» Small static memory footprint for many applications
— Computes fanout information on demand

Without hashing

ajye
=

With hashing®®

Sequential AlGs

Sequential networks have memory elements in
addition to logic nodes

— Memory elements are modeled as D-flip-flops

— Initial state {0,1,x} is assumed to be given

Several ways of representing sequential AlGs

— Additional PIs and POs in the combinational AIG

— Additional register nodes with sequential structural hashing
Sequential synthesis (in particular, retiming)
annotates registers with additional information

— Takes into account register type and its clock domain

25

AlG: A Unifying Representation

An underlying data structure for various computations

— Rewriting, resubstitution, simulation, SAT sweeping, induction,
etc. are based on the same AlIG manager

A unifying representation for the whole flow
— Synthesis, mapping, verification use the same data structure
— Allows multiple structures to be stored and used for mapping
The main functional representation in ABC
— A foundation of new logic synthesis

26

(3) AlG-Based Solutions

e Synthesis
 Mapping
 Verification

27

Design Flow

System Specification

Logic synthesis

:

Technology mapping

uoneslyls

Manufacturing

28

Combinational Synthesis

minimizes the number of AIG nodes without
increasing the number of AIG levels

Rewriting AIG subgraphs

* Pre-computing AIG subgraphs Rewriting node A
— Consider function f = abc ﬁ{@\ /@b
- a
g2 b c
Subgraph 1 Subgraph 2 Subgraph 3 a b ac

g{O\ Rewriting node B
Q b ®) \ /
ab ac b ¢ = N\
hdh T KA
a a C b ¢

In both cases 1 node is saved
29

AlG-Based Solutions (Synthesis)

» Restructures AIG or logic network by the following transforms
— Algebraic balancing
— Reuwriting/refactoring/redecomposition
— Resubstitution
— Minimization with don't-cares, etc.

D1 D2 D3 D4

D1
D2 HAIG D4

D3 30

AlG-Based Solutions (Mapping)

Input: A Boolean network Output: A netlist of K-LUTs implementing
(And-Inverter Graph) AIG and optimizing some cost function
f
f
A
Technology
Mapping
e ab cde
The subject graph The mapped netlist 31

Formal Verification

Equivalence checking
— Takes two designs and makes

a miter (AIG) A
0
— Takes design and property and D1 D2
makes a miter (AlG)

The goals are the same: to .
transform AIG until the Property checking
output is proved constant O A

P
(ABC won model checking o 0

competitions in recent years)

32

(4) Introduction to ABC

e Differences
e Fundamentals
* Programming

33

What Is Berkeley ABC?

* A system for logic and
— Fast
— Scalable
— High quality results (industrial strength)
— Exploits between synthesis and verification

e A programming environment
— Open-source
— Evolving and improving over time

34

Existing Capabilities (2005-2008

Cut-based, heuristic, good

Fast, scalable, good quality area/delay. flexible

/

Integrated, interacts with Innovative, scalable,
synthesis verifiable

35

Screenshot

ST\abc.exe”

UC Berkeley, ABC 1.01 (compiled Aug 3 2008 09:41:23)

abc 01> read wb2\blificloud.blif

Warning: The network contains hierarchy.

Hierarchy reader flattened 481980 instances of logic boxes and left 9839 black boxes.

Hierarchy reader converted 9839 instances of blackboxes.

abc 02>

abc 02> ps; st; ps:_ps: time

cloud cifo = 27926/13552 lat = 36862 nd = 92798 edge = 267768 cube = 164666 lev = 23

g%ggg) . : }150 = 27926/13552 lat = 36862 and = 227678 (exor = 9964) (mux = 34186) (pure and =
ev =

cloud - i/o = 27526713552 lat - nd - EE cdoe - 236594 aig = 273622 lev = 8

seconds, total: 16.57 seconds

abc 04> read wb2\blificloud.blif

Warning: The network contains hierarchy.

Hierarchy reader flattened 48190 instances of logic boxes and left 9839 black boxes.
Hierarchy reader converted 9839 instances of blackboxes.

ps; if K 6; ps; time

;ost; zero:-l H
D = 27526/13552 lat = 36862 nd = 92798 edage = 267760 cube = 164666 lev = 23
o = 27526/13552 lat = 23944 and = 163840 (exor = 8825) (mux = 25584) (pure and =

2
- i/o = 27526713552 lat = nd - B edoe = 174861 aig = 199632 lev = 8
:-seconds. total: 33.27 seconds

36

ABC vs. Other Tools

Industrial

black-box, push-button, no source code, often expensive

= SIS

data structures / algorithms outdated, weak sequential synthesis

= VIS

not meant for logic synthesis, does not feature the latest SAT-based
implementations

MVSIS

not meant for binary synthesis, lacking recent implementations

37

How Is ABC Different From SIS?

f

O @,

/
a b C d e

b C d

N

AIG is a Boolean network of 2-input
AND nodes and inverters (dotted lines) 38

One AIG Node — Many Cuts

Combinational AIG « Manipulating AlGs in ABC
f — Each node in an AIG has many cuts
— Eachcutis a SIS node
e — No a priori fixed boundaries

» Implies that AIG manipulation with
cuts is equivalent to working on

Boolean networks at the

same time

39

Comparison of Two Syntheses

Boolean network
Network manipulation

AIG network
DAG-aware AlG rewriting (Boolean)

(algebraic) — Several r_glated algorithms
L * Rewriting

— Elimination . Refactoring

— Factoring/Decomposition Balancing

— Speedup + Speedup

Node minimization NOde minimization

_ Espresso — Boolean decomposition .

- [B)I?)rlljts cares computed using gomnuhﬁeiagﬁsarc]arg%}ed using

L — Resubstitution with don’t cares

— Resubstitution

Technology mapping Technology mapping

— Tree based

— Cut based with choice nodes 40

Model Checking Competition

) Hardware Model Checking Competition 2010 - Mozilla Firefox ;Iglll

File Edit Wiew History Bookmarks Yahoo! Tools Help

i; - c % (a1 |@|http:,I’,I’Fmv.jku.at,l’hwmcch,l’resuIts.htmI ﬁ:'_'f - I'-.lV|G00gIe)_ |‘ %
Friv Hardware Model Checking Eompetiti...l - F

_’_N Results

Ncc The results have been presented at HWWWY' 10 with the following slides.

The winners are:

HWMCC'10 ALL abcsuperprove University of California, Berkelsy
Benchmarks SAT abchme? University of California, Berkelay
Organizers UNSAT pdtray Polifecnico di Torino
Results
Rules For more information on the set-up please consult the slides of the HWAW 10

IWore details can be found in the following files: table xs, table csv, details td, and checked b

Done 4
41
Cactus all Instances 22/26
900 bo T N T " o T T T T
abecsuperprove e
pdtrav Va s* *
ic3 ¥ ® _
800 - abcdprove O o & ° + 7
tipind . . Al
cip .
700 abc08 L] - . 2 O T]
bipzzime A& -
_bip 4 ° o Vallg
tiplnd w v - X
600 - mcsti v 8 . E*\\ -
mcaigerind ¢ v N
tipbmc ¢ @ . ¥ &
500 tipbmc08 & 89 v oe8
B mbme A BH i T
abcbme2 © o O v,
mcaigerbmc @ e y F—
400 - nusmvbme © @9 4 i
abcbmc3 @ o) v N
aigtrav =~ © Qo s
nusmvbdd @ v
300 -
200 -
100 -

800

Further Reading: ABC Tutorial

For more information, please refer to

— R. Brayton and A. Mishchenko, "ABC: An academic
industrial-strength verification tool", Proc. CAV'10,
Springer, LNCS 6174, pp. 24-40.

— http://www.eecs.berkeley.edu/~alanmi/publications/20
10/cav10_abc.pdf

43

Summary

Introduced problems in logic synthesis
— Representations and computations

Described And-Inverter Graphs (AlIGS)
— The foundation of innovative synthesis

Overviewed AlG-based solutions

— Synthesis, mapping, verification
Introduced ABC

— Differences, fundamentals, programming

44

Assignment: Using ABC

» Using BLIF manual

http://www.eecs.berkeley.edu/~alanmi/publicatio
ns/other/blif.pdf

create a BLIF file representing a 2-bit multiplier

» Perform the following sequence:
— read the file into ABC (command "read")
— check statistics (command "print_stats")
— visualize the network structure (command "show")
— convert to AIG (command "strash")
— visualize the AIG (command "show")
— convert to BDD (command "collapse")

— visualize the BDD (command "show_bdd")
45

Assignment: Programming ABC

* Write a procedure in ABC environment to iterate over the objects of
the network and list the ID number, type, and fanin object IDs for
each object on a separate line. Integrate this procedure into ABC,
so that running command "test" would invoke your code, and print
the result. Compare the print-out of the new command "test" with the
result of command "show" for the multiplier example above

e Comment 1: For commands "show" and "show_bdd" to work, please
download the binary of software "dot" from GraphViz webpage and
put it in the same directory as the ABC binary or anywhere else in
the path: http://www.graphviz.org

 Comment 2: Make sure GSview and Ghostscript are installed on
your computer. http://pages.cs.wisc.edu/~ghost/gsview/

46

Programming Help

 Example of code to iterate over the objects

» Example of code to create new command “test”

Call the new procedure (say, Abc_NtkPrintObjs) from
Abc_CommandTest() in file “abc\src\base\abci\abc.c”

47

ABC Network Data Types

Logic Network

SOP BDD
by command “sop” by command “bdd”

AlG Map
by command “aig” by command “map”

Global AIG Global BDD
(by command “strash”) (by command “collapse”)

48

