Overview

Introduction (1) Problems in logic synthesis
to — Representations and computations

Logic Synthesis with ABC (2) And-Inverter Graphs (AIGs)
— The foundation of innovative synthesis
(3) AlG-based solutions
— Synthesis, mapping, verification
(4) Introduction to ABC
— Differences, fundamentals, programming

Alan Mishchenko

UC Berkeley « (5) Programming assignment
1 2
(1) Problems in Synthesis Terminology
* What are the objects to be “synthesized™? « Logic function (e.g. F = ab+cd)
— Logic structures Variabl b. '
— Boolean functions (with or without don’t-cares) — Variables (e.g. b)
— State machines, relations, sets, etc. — Minterms (e.g. abcd)
How to represent them efficiently? — Cube (e.g. ab) Primary outputs
— Depends on the task to be solved . Logi i K | £ T
— Depends on the size of an object Og'? ne WOI’ \ TFO//
How to create, transform, minimize the representations? — Primary inputs/outputs 0k Fanouts
~ Multi-level logic synthesis — Logic nodes A
— Technology mapping — Fanins/fanouts e \\lfanms
How to verify the correctness of the design? o . TR N
— Gate-level equivalence checking — Transitive _fan'n/fanoyt cone [T T T T T T T T TTTT]
— Property checking — Cut and window (defined later) Primary inputs

— Etc.




Logic (Boolean) Function

Relations

ab
00 01 11 10
« Completely specified ®d owfoTo]1]0  Relation (al1,a2) — (b1,b2) Characteristic function
H H oo 0 1 0
logic function N SRR - (0,0) - (0,0) al a2
wlo|lo|1]o0 - (O,l)—)(l,O)(O,l) bl b2 00 01 11 10
ab - (1,00 > (1,2) ZS (1) 2 z 2
. 00 01 11 10 _ 1’1 N 110
* Incompletely specified o [oTolr 0 L~ (L0) uflojofola
. . _ _ _ 10
logic function N -
0fo 0 1 0 * FSM
Current
state
00 01 11 10 00 01 11 10 00 01 11 10 @ @ Next 00 01 11 10
owlolol1]o o110l ooflofofo |o state 1p11-10
olof{ofofo oli1fofofo oo 1|11 i Ll
uflilz1]1]o0 ufloloflofo mwjo|ofof1 . —
wlolo|1]o0 wl1|1]o]1 wlolofo]o @ oprlol- 1o
On-set Off-set DC-set ° 6
Find each of these representations? ik « TT are the natural representation of logic functions
* Truthtable (TT) f 9999 19 — Not practical for large functions
*  Sum-of-products (SOP) 40» 22?2 2 — still good for functions up to 16 variables
: P.rOdUCEOfTS!JmZ.(POS) TR e SOP is widely used in synthesis tools since 1980’'s
: Blnar_y ecision ﬁ\gram (BDD) Q@ Q. o100 1o — More compact than TT, but not canonical
: And.-lnverter graph (AIG) — Can be efficiently minimized (SOP minimization by Espresso, ISOP
* Logic network (LN) 4 B o101 10 computation) and translated into multi-level forms (algebraic factoring)
OET i e BDD is a useful representation discovered around 1986
SOOO 5 — Canonical (for a given function, there is only one BDD)
] oo 1o — Very good, but only if (a) it can be constructed, (b) it is not too large
F = ab+cd — Unreliable (non-robust) for many industrial circuits
a C 1010 | O . . .
TR e AIG is an up-and-coming representation!
@ 10 11 — Compact, easy to construct, can be made “canonical” using a SAT solver
R — Unifies the synthesis/mapping/verification flow
— The main reason to give this talk ©
F = (a+c)(a+d)(b+c)(b+d 1110 |1
(a*c)(@rd)(brc)(b+d) CRO R e
7




Historical Perspective

Problem Size

ABC
100000
SIS, VIS,
MVSIS
100
Espresso,
50 MIS, SIS
AIG
16 sop BDD CNF
T
1950-1970 1980 1990 2000 Time

What Representation to Use?

For small functions (up to 16 inputs)

— TT works the best (local transforms, decomposition, factoring, etc.)
For medium-sized functions (16-100 inputs)

— In some cases, BDDs are still used (reachability analysis)

— Typically, it is better to represent as AIGs
« Translate AIG into CNF and use SAT solver for logic manipulation
— Sometimes need interpolation or SAT assignment enumeration
For large industrial circuits (>100 inputs, >10,000 gates)
— Traditional LN representation is not efficient
— AIGs work remarkably well
« Lead to efficient synthesis
« Are a natural representation for technology mapping
« Easy to translate into CNF for SAT solving
« Etc.

10

What are Typical Transformations?

» Typical transformations of representations
— For SOP, minimize cubes/literals
— For BDD, minimize nodes/width
— For AIG, restructure, minimize nodes/levels
— For LN, restructure, minimize area/delay

11

Algorithmic Paradigms

Divide-and-conquer

— Traversal, windowing, cut computation
Guess-and-check

— Bit-wise simulation
Reason-and-prove

— Boolean satisfiability

12




Traversal

e Traversal is visiting nodes in
the network in some order

Primary outputs

» Topological order visits
nodes from Pls to POs

— Each node is visited after its
fanins are visited

» Reverse topological order visits
nodes from POs to Pls

— Each node is visited after its
fanouts are visited

FTTTTTTTTTTT T
Primary inputs

Traversal in a topological order
13

Windowing

+ Definition
— A window for a node is the
node’s context, in which an
operation is performed
* A window includes
— k levels of the TFI
— m levels of the TFO

— all re-convergent paths
between window Pls and
window POs

14

Structural Cuts in AIG

A cut of a node n is a set of
nodes in transitive fan-in

such that
every path from the node to Pls
is blocked by nodes in the cut.

A k-feasible cut means the size

of the cut must be k or less. The set {p, b, c} is a 3-feasible cut of

node n. (It is also a 4-feasible cut.)

k-feasible cuts are important in FPGA mapping because the logic between
root n and the cut nodes {p, b, c} can be replaced by a k-LUT
15

Cut Computation

{{n}, }
Q"
ﬂ (o) (2 b} {{ah (0. )} k[ cuts per

; D q \ node

Computation is /.\ ’\ 4 6
done bottom-up 5 20
{{a}} {{b}} {fc}} 6 80

‘ ) 7 150

a b c

The set of cuts of a node is a ‘cross product’ of the sets of cuts of its children.
Any cut that is of size greater than k is discarded.

(P. Pan et al, FPGA '98; J. Cong et al, FPGA '99)

16




Bitwise Simulation

Assign patrticular (or random) values
at the primary inputs
— Multiple simulation patterns are
packed into 32- or 64-bit strings

Perform bitwise simulation at each
node

— Nodes are ordered in a topological
order

Works well for AIG due to
— The uniformity of AND-nodes
— Speed of bitwise simulation

— Topological ordering of memory used
for simulation information

o

2w N e

[o]-]o]c]

=

17

Boolean Satisfiability

» Given a CNF formula ¢(x), satisfiability problem is
to prove that ¢(x) = 0, or to find a counter-example

x"such that o(x’) =1

Why this problem arises?

— If CNF were a canonical representation (like BDD), it would be

trivial to answer this question.

— But CNF is not canonical. Moreover, CNF can be very
redundant, so that a large formula is, in fact, equivalent to 0.

— Looking for a satisfying assignment can be similar to searching

for a needle in the hay-stack.

— The problem may be even harder, if there is no needle there!

18

Example (Deriving CNF)

CNF

0 010
QEn
o/

clo

19

SAT Solver

SAT solver types

— CNF-based, circuit-based
— Complete, incomplete

— DPLL, saturation, etc.

Applications in EDA

— Verification
« Equivalence checking
* Model checking

— Synthesis
« Circuit restructuring
« Decomposition
« False path analysis

— Routing

A lot of magic is used to build an
efficient SAT solver
— Two literal clause watching

— Conflict analysis with clause
recording

— Non-chronological backtracking
— Variable ordering heuristics
— Random restarts, etc

The best SAT solver is MiniSAT
(http://minisat.se/)
— Efficient (won many competitions)
— Simple (600 lines of code)
— Easy to modify and extend
— Integrated into ABC 20




Example (SAT Solving)

21

Courtesy Karem Sakallah, University of Michigan

o PO /\
A AN ya
o R Y ANVANVAN
: E:Ei:z:;?/\ A5 AN
N HE BEE B

(2) And-Inverter Graphs (AIG)

Definition and examples

Several simple tricks that make AlGs work
Sequential AlGs

Unifying representation

A typical synthesis application: AlG rewriting

AlIG Definition and Examples

AlG is a Boolean network composed of two-input ANDs and inverters.

% 00 01 11 10

00] O 0 0 &\
01jojo [ ] /O</ /O\ 6 nodes
mjolf Jj| 0 @ b d \\ 4 levels
1oflo|oflL]o < o

/ /7N

a c¢c b c

% 00 01 11 10

oolo|o (_ @ }

orlo o % ) . /O\o S odes
11 0 ( 0 / evels
ofo |l Jo a/qé }\d t(é}\d ) 23'

Three Simple Tricks

Structural hashing
— Makes sure AIG is stored in a compact form
— Is applied during AIG construction
» Propagates constants
« Makes each node structurally unique
Complemented edges
— Represents inverters as attributes on the edges
¢ Leads to fast, uniform manipulation
« Does not use memory for inverters
 Increases logic sharing using DeMorgan’s rule
Memory allocation
— Uses fixed amount of memory for each node
« Can be done by a simple custom memory manager
« Even dynamic fanout manipulation is supported!
— Allocates memory for nodes in a topological order
« Optimized for traversal in the same topological order
« Small static memory footprint for many applications
— Computes fanout information on demand

Without hashing

With hashing™




Sequential AIGs

Sequential networks have memory elements in
addition to logic nodes

— Memory elements are modeled as D-flip-flops

— Initial state {0,1,x} is assumed to be given

Several ways of representing sequential AlIGs

— Additional Pls and POs in the combinational AIG

— Additional register nodes with sequential structural hashing
Sequential synthesis (in particular, retiming)
annotates registers with additional information

— Takes into account register type and its clock domain

25

AIG: A Unifying Representation

* An underlying data structure for various computations

— Rewriting, resubstitution, simulation, SAT sweeping, induction,
etc. are based on the same AIG manager

» A unifying representation for the whole flow
— Synthesis, mapping, verification use the same data structure
— Allows multiple structures to be stored and used for mapping
* The main functional representation in ABC
— A foundation of new logic synthesis

26

(3) AlG-Based Solutions

» Synthesis
« Mapping
 Verification

27

Design Flow

’ System Specification ‘

’ Logic synthesis ‘

l

’ Technology mapping ‘

uoneslLIaA

<::’ i Physical synthesis |

el R ’

’ Manufacturing ‘

28




Combinational Synthesis

minimizes the number of AIG nodes without
increasing the number of AIG levels

Rewriting AlG subgraphs

» Pre-computing AIG subgraphs Rewriting node A
— Consider function f = abc ®\
dn = o
\ b \c
Subgraph 1 Subgraph 2 Subgraph 3 ab ac

O\ Rewriting node B
ﬁ{ Q @ b ®) \ By
ab ac b ¢ a ¢ = e, \d
{ @ Q \
a a c b oG a b a

In both cases 1 node is saved
29

AlG-Based Solutions (Synthesis)

* Restructures AIG or logic network by the following transforms
— Algebraic balancing
— Rewriting/refactoring/redecomposition
— Resubstitution
— Minimization with don't-cares, etc.

D1 D2 D3 D4

D1
D2 HAIG D4

D3 30

AlG-Based Solutions (Mapping)

Input: A Boolean network Output: A netlist of K-LUTs implementing
(And-Inverter Graph) AIG and optimizing some cost function
f
f
S
Technology
Mapping
e ab cde

The subject graph The mapped netlist 31

Formal Verification

Equivalence checking
— Takes two designs and makes

a miter (AIG) Q
0
— Takes design and property and D1 b2
makes a miter (AIG)

The goals are the same: to -
transform AIG until the Property checking
output is proved constant O A

p
(ABC won model checking b1 0
competitions in recent years)

32




(4) Introduction to ABC

» Differences
 Fundamentals
* Programming

33

What Is Berkeley ABC?

» A system for logic and
— Fast
— Scalable
— High quality results (industrial strength)
— Exploits between synthesis and verification

* A programming environment
— Open-source
— Evolving and improving over time

34

Existing Capabilities (2005-2008)

Cut-based, heuristic, good

Fast, scalable, good quality area/delay. flexible

Integrated, interacts with Innovative, scalable,
synthesis verifiable

35

Screenshot

36




ABC vs. Other Tools

Industrial

black-box, push-button, no source code, often expensive
= SIS

data structures / algorithms outdated, weak sequential synthesis

= VIS

not meant for logic synthesis, does not feature the latest SAT-based
implementations

MVSIS

not meant for binary synthesis, lacking recent implementations

37

How Is ABC Different From SIS?

/
a

ol

e

b d

f

@,

0@

AIG is a Boolean network of 2-input
AND nodes and inverters (dotted lines

)38

One AIG Node — Many Cuts

Combinational AIG + Manipulating AlIGs in ABC
f — Each node in an AIG has many cuts
— Eachcutisa SIS node
) — No a priori fixed boundaries
* Implies that AIG manipulation with
cuts is equivalent to working on
Boolean networks at the

same time

39

Comparison of Two Syntheses

Boolean network
Network manipulation
(algebraic)

— Elimination

— Factoring/Decomposition
— Speedup

Node minimization

— Espresso

— Don't cares computed using
BDDs

— Resubstitution
Technology mapping
— Tree based

AIG network
DAG-aware AIG rewriting (Boolean)
— Several related algorithms
* Rewriting
« Refactoring
« Balancing
¢ Speedup
Node minimization
— Boolean decomposition

— Don't cares computed using
simulation and SAT

— Resubstitution with don't cares

Technology mapping
— Cut based with choice nodes 4




Model Checking Competition

%) Hardware Model Checking Competition 2010 - Mogzilla Firefox =10l x|
Ele Edit View History Bookmarks Yahoo! Tools  Help
6 - € 0 [ [ttt ctinemect jresuts bl v - I-‘_lv [ Googe Pl Ea
J Fiv Hardware Model Checking Competiti... | = ]T
‘ 'N Results
"cc The results have been presented at HWWW 10 with the following slides
The winners are:
HWMCC*10 ALL abesuperprove  Universify of California, Berkeley
Benchmarks SAT abcbmez2 Univarsify of California, Berkelay
Crganizers UNSAT pdirav Polifacnico di Torino
ResLits
Bules For more information an the set-up please consult the slides of the HAWWY 10
Ware details can be found in the following files: table xls, table csv, details b, and checked b4
Done 4
a1

Cactus all Instances 22126

900 T .
abcsuperprove  + e v TmO +

pdtrav q,
ic3 e .

800 - abcdprove - 1

tipind . .

[ %
[e]
<@

cip
700 abc08 » . v a B B
bipzzig]c - -

ip

tipnd v v -
800 mcsti 8 ¥ g
mcaigerind
tipbme @ .
tipbmc08 & 8o
o

* O
A

500 - mbme

abcbme2
mcaigerbme
400 nusmvbme
abcbme3
aigtrav
nusmvbdd

$000G0
[

300

200

100

“'..,.v.!%o @B 0o o

0 ' ok -
0 100 200 300 400 500 600 700 800

Further Reading: ABC Tutorial

» For more information, please refer to

— R. Brayton and A. Mishchenko, "ABC: An academic
industrial-strength verification tool", Proc. CAV'10,
Springer, LNCS 6174, pp. 24-40.

— http://www.eecs.berkeley.edu/~alanmi/publications/20
10/cav10_abc.pdf

43

Summary

Introduced problems in logic synthesis

— Representations and computations

» Described And-Inverter Graphs (AIGS)
— The foundation of innovative synthesis

» Overviewed AlG-based solutions

— Synthesis, mapping, verification
 Introduced ABC
— Differences, fundamentals, programming

44




Assignment: Using ABC

e Using BLIF manual
http://www.eecs.berkeley.edu/~alanmi/publicatio
ns/other/blif.pdf

create a BLIF file representing a 2-bit multiplier

» Perform the following sequence:
— read the file into ABC (command "read")
— check statistics (command "print_stats")
— visualize the network structure (command "show")
— convert to AIG (command "strash")
— visualize the AIG (command "show")
— convert to BDD (command "collapse™)

— visualize the BDD (command "show_bdd")
45

Assignment: Programming ABC

« Write a procedure in ABC environment to iterate over the objects of
the network and list the ID number, type, and fanin object IDs for
each object on a separate line. Integrate this procedure into ABC,
so that running command "test" would invoke your code, and print
the result. Compare the print-out of the new command "test" with the
result of command "show" for the multiplier example above

« Comment 1: For commands "show" and "show_bdd" to work, please
download the binary of software "dot" from GraphViz webpage and
put it in the same directory as the ABC binary or anywhere else in
the path: http://www.graphviz.org

 Comment 2: Make sure GSview and Ghostscript are installed on

your computer. http://pages.cs.wisc.edu/~ghost/gsview/

46

Programming Help

» Example of code to iterate over the objects

» Example of code to create new command “test”

Call the new procedure (say, Abc_NtkPrintObjs) from
Abc_CommandTest() in file “abc\src\base\abci\abc.c”

a7

ABC Network Data Types

Logic Network

SOP BDD
by command “sop” by command “bdd”

AIG
by command “aig”

Map
by command “map”

Global AIG Global BDD
(by command “strash”) (by command “collapse”)

48




