Logic Synthesis and
Verification

Jie-Hong Roland Jiang
LR

/\\
Department of Electrical Engineering I\
National Taiwan University

Fall 2013

Boolean Function
Representation I

Reading:
Logic Synthesis in a Nutshell
Section 2

most of the following slides are by
courtesy of Andreas Kuehlmann

2

Assumption

OO Unless otherwise said, from now on we
are concerned with two-element Boolean
algebra (i.e. B = {0,1})

Boolean Space

OoB=4{0,1}
O B® = {0,1}x{0,1} = {00, 01, 10, 11}
Karnaugh Maps: Boolean Lattices:
B [] [
a>
B[]

o0
2w

B4

Boolean Function

O For B = {0,1}, a Boolean function f: B" — B over variables
X4,..-,X, Maps each Boolean valuation (truth assignment) in
BrtoOorl

Example
f(x,,%,) with f(0,0) = 0, f(0,1) = 1, f(1,0) = 1, f(1,1) =0

Boolean Function

O Onset of f, denoted as f2, is f1={v € B" | f(v)=1}

m |f f1 = Bn, fis a tautology
O Offset of f, denoted as f°, is f°= {v € B" | f(v)=0}

m |f fO = Bn, f is unsatisfiable. Otherwise, f is satisfiable.
O

O Boolean functions f and g are equivalent if Yve B". f(v) =
g(v) where v is a truth assignment or Boolean valuation

O A literal is a Boolean variable x or its negation x' (or x, —x)
in a Boolean formula

f(xg, Xo0 X3) = %3 f(Xy, Xp0 Xg) = ;1

Boolean Function

O There are 2" vertices in B"
n . . .
O There are 22 distinct Boolean functions

B Each subset f1 < B" of vertices in B" forms a
distinct Boolean function f with onset f!

XXXy
000
001
010 1
* 100 =1
=
K 101
™ 110 1

111

Boolean Operations

Given two Boolean functions:
f: B> B
g:B"—> B

O h = f A g from AND operation is defined as
ht=flng'; ho=B"\ h!

O h =f v g from OR operation is defined as
ht=flug!; ho=B"\ht

O h = —f from COMPLEMENT operation is defined as
hl=1f0; h0 =f1

Cofactor and Quantification

Representation of Boolean Function

e & e O ¢ variab [0 Represent Boolean functions for two reasons
+ B7— B, with the Input variable (. Xz, X+, n) B to represent and manipulate the actual circuit we are
O Positive cofactor on variable x; Implep”_lentlng .
h = f,; is defined as h = f(X{,X5,...,1,...,X) m to facilitate Boolean reasoning
O Negative cofactor on variable x; .
h=1f is defined as h = f(Xy,Xps.,05.0r1X) 0 Data structures for representation
H Truth table
O Existential quantification over variable x; B Boolean formula
h = 3x;. f is defined as h = f(Xy,X5,...,0,...,X) Vv f(X1, X550, 1,...,X,) OSum of products (Disjunctive “normal”’ form, DNF)
OProduct of sums (Conjunctive “normal” form, CNF)
O Universal quantification over variable x; B Boolean network
h = Vx;. f is defined as h = f(x;,X5,...,0,...,X) A f(Xy,X5,...,1,....,X,) OCircuit (network of Boolean primitives)
O Boolean difference over variable x; !:I/—\nd—inve'rt.er gra.ph (AIG)
h = of/ox; is defined as h = f(x;,X5,..,0,...,X,) ® F(X;,Xp,...,1,...,Xp) B Binary Decision Diagram (BDD)
9 10
Boolean Function Representation Boolean Function Representation
Truth Table Boolean Formula
I I
o fTJggt‘iggg)"? (function table for multi-valued O A Boolean formula is defined inductively as an expression
The truth table of a function f - B" - B is a with the following formation rules (syntax):
tabulation of its value at each of the 2"
vertices of B". abcd f abcd T formula ::= ‘(* formula *y’
0 0000 O 8 1000 0
In other words the truth table lists all mintems 1 0001 1 9 1001 1 I Boolean CO'TStam (true or false)
Example: f = a'b’c’'d + a’b’cd + a’bc’'d + 2 0010 O 10 1010 O | Boolean variable
ab'c’'d + ab’cd + abc'd + 30011 1 11 1011 1 | formula “+” formula (OR operator)
abed’ + abed 4 0100 0 12 1100 0 “n
5 0101 1 13 1101 1 | formula “” formula (AND operator)
The truth table representation is 6 0110 O 14 1110 1 | — formula (complement)
impractical for large n 7 0111 0 15 1111 1
canonical Example

If two functions are the same, then their
canonical representations are isomorphic.

11

f= (X, X)) + (Xg) + =(=(X, - (=X1)))
typically “” is omitted and ‘(’,)’ and ‘=’ are simply reduced by priority,

e.g. f=X, X + X5+ X, =X

12

Boolean Function Representation
Boolean Formula in SOP

O A cube is defined as a conjunction of literals, i.e. a product
term.

Example

C = Xx;X,'X5 represents the function with onset: fl =
{(xX,=1,x,=0,x3=1)} in the Boolean space spanned by
X1,X5,X3, Or f1 = {(x,;=1,%x,=0,x;=1, x,=0),
(X,=1,x,=0,%X3=1,%x,=1)} in the Boolean space spanned
by X;,X5,X3,X,, OF ...

f=x, f=X%, =X XXg
X3 X3 X3
— —
Xy Xy X 13

Boolean Function Representation
Boolean Formula in SOP

O If C c 1, C the onset of a cube ¢, then c is an
implicant of f

O If C < B", and c has k literals, then |C|= 2"k, i.e.,
C has 2"k elements

Example
c = xy' (c:B3—> B), C = {100, 101} c B?
k=2,n=3 IC| =2 =232

O An implicant with n literals is a minterm

14

Boolean Function Representation
Boolean Formula in SOP

O A function can be represented by a sum-of-cubes (products):
f=ab + ac + bc

Since each cube is a product of literals, this is a sum-of-products
(SOP) representation or disjunctive normal form (DNF)

O An SOP can be thought of as a set of cubes F
F = {ab, ac, bc}
O A set of cubes that represents f is called a cover of f.
F,={ab, ac, bc} and F,={abc, abc’, ab’c, a'bc}
are covers of
f=ab + ac + bc.

O Mainly used in circuit synthesis; seldom used in Boolean reasoning

15

Boolean Function Representation
Boolean Formula in POS

O Product-of-sums (POS), or conjunctive normal form (CNF),
representation of Boolean functions
B Dual of the SOP representation

Example
¢ = (a+b’'+c) (a'+b+c) (a+b’+c’) (a+b+c)

O A Boolean function in a POS representation can be derived
from an SOP representation with De Morgan’s law and the
distributive law

O Mainly used in Boolean reasoning; rarely used in circuit
synthesis (due to the asymmetric characteristics of NMOS
and PMOS, and the easiness of adding design constraints)

16

Boolean Function Representation
Boolean Network

O Used for two main purposes

B as target structure for logic implementation which gets
restructured in a series of logic synthesis steps until
result is acceptable

B as representation for Boolean reasoning engine

O Efficient representation for most Boolean problems

B memory complexity is similar to the size of circuits that
we are actually building

O Close to the input and output representations of logic
synthesis

17

Boolean Function Representation
Boolean Network

A Boolean network is a directed graph C(G,N)
where G are the gates and N ¢ (GxG) are the
directed edges (nets) connecting the gates.

Some of the vertices are designated:
<G
OcG

1IN0 =Y

Each gate g is assigned a Boolean function fg
which computes the output of the gate in tefms
of its inputs.

18

Boolean Function Representation
Boolean Network

O The fanin FI(g) of a gate g are the predecessor gates of g:
FI(9) = {9’ | (9',9) € N} (N: the set of nets)

O The fanout FO(Q) of a gate g are the successor gates of g:
FO(9) = {9’ | (9.9) N}

O The cone CONE(Q) of a gate g is the transitive fanin (TFI) of
g and g itself

O The support SUPPORT(g) of a gate g are all inputs in its
cone:

SUPPORT(g) = CONE(g) N |

19

Boolean Function Representation
Boolean Network

Example

FI6) = {2,4} O
FO(6) = {7,9}

CONE(6) = {1,2,4,6}

SUPPORT(6) = {1,2}

20

Boolean Function Representation
Boolean Network

O Circuit functions are defined recursively:

X, if g, el
h, = fgi(hgj,...,hgk), 9.9, €FI(g;) otherwise

If G is implemented using physical gates with positive (bounded)
delays for their evaluation, the computation of h, depends in
general on those delays.

Definition
A circuit C is called combinational if for each input assignment of
C for t—>w the evaluation of hy for all outputs is independent of
the internal state of C.

Proposition
A circuit C is combinational if it is acyclic. (converse not true!)

21

Boolean Function Representation
Boolean Network

General Boolean network:
O Vertex can have an arbitrary finite number of inputs and outputs

O Vertex can represent any Boolean function stored in different
ways, such as:

B SOPs (e.g. in SIS, a logic synthesis package)

BDDs (to be introduced)

AlGs (to be introduced)

truth tables

Boolean expressions read from a library description
other sub-circuits (hierarchical representation)

O The data structure allows general manipulations for insertion and
deletion of vertices, pins (connection ports of vertices), and nets

B general but far too slow for Boolean reasoning

22

Boolean Function Representation
Boolean Network

Specialized Boolean network:
O Non-canonical representation in general

B computational effort of Boolean reasoning is due to this
non-canonicity (c.f. BDDs)

O Vertices have fixed number of inputs (e.g. two)
O Vertex function is stored as label (e.g. OR, AND, XOR)

O Allow on-the-fly compaction of circuit structure

B Support incremental, subsequent reasoning on multiple
problems

23

Boolean Function Representation

And-Inverter Graph

O AND-INVERTER graphs (AIGS)
vertices: 2-input AND gates
edges: interconnects with (optional) dots representing INVs

O Hash table to identify and reuse structurally isomorphic

L s
= o ol

7 O——0

f
9

Boolean Function Representation

And-Inverter Graph

O Data structure for implementation
B Vertex:

O pointers (integer indices) to left- and right-child and fanout
vertices

O collision chain pointer
Oother data

B Edge:
O pointer or index into array

O one bit to represent inversion

B Global hash table holds each vertex to identify isomorphic
structures

B Garbage collection to regularly free un-referenced vertices

25

Boolean Function Representation

And-Inverter Graph

O Data structure

Hash Table
one

0455
0456
0457

Constant zero
One Vertex

hash value

v .
| left pointer

complement bits —+

I right pointer 0456

—— next in collision chain 0 left

—— array of fanout pointers +~—0right
next —_|

fanout

tlals

A

26

Boolean Function Representation

And-Inverter Graph

O AIG package for Boolean reasoning
Engine application:
- traverse problem data structure and build Boolean problem using the interface
- call SAT to make decision

Engine Interface: External reference pointers attached

void INITQ to application data structures

void QUITQO \

Edge VARQ

Edge AND(Edge p1, >
Edge p2)

Edge NOT(Edge pl)

Edge OR(Edge pl
Edge p2) T

int SAT(Edge pl) »r

Boolean Function Representation

And-Inverter Graph

O Hash table look-up

Algorithm HASH_ LOOKUP(Edge pl, Edge p2) {
index = HASH_FUNCTION(p1,p2)
p = &hash_table[index]
while(p "= NULL) {
if(p->left == pl && p->right == p2) return p;
p = p->next;
3
return NULL;
}

O Tricks:
B keep collision chain sorted by the address (or index) of p

B use memory locations (or array indices) in topological order for
better cache performance

28

Boolean Function Representation
And-Inverter Graph

0 AND operation

Algorithm AND(Edge pl,Edge p2){
iT(pl == constl) return p2
if(p2 == constl) return pl
if(pl == p2) return pl
ifT(pl == —p2) return constO
if(pl == constO || p2 == const0) return constO

iT(RANK(p1l) > RANK(p2)) SWAP(pl,p2)

iT((p = HASH_LOOKUP(p1,p2)) return p
return CREATE_AND_VERTEX(pl,p2)

29

Boolean Function Representation
And-Inverter Graph

O NOT operation

Algorithm NOT(Edge p) {
return TOOGLE_COMPLEMENT BIT(p)
}

0 OR operation
Algorithm OR(Edge pl,Edge p2){

return (NOT(AND(NOT(p1),NOT(p2))))
}

30

Boolean Function Representation
And-Inverter Graph

O Cofactor operation

Algorithm POSITIVE COFACTOR(Edge p,Edge v){
if(1S_VAR(D)) {

if(p == v) {
iT(I1S_INVERTED(Vv) == IS_INVERTED(p)) return constl
else return constO
}
else return p

}

if((c = GET_COFACTOR(p,Vv)) == NULL) {
left = POSITIVE_COFACTOR(p->left, v)
right = POSITIVE_COFACTOR(p->right, v)
c = AND(left,right)
SET_COFACTOR(p,V,C)

}

iT(IS_INVERTED(p)) return NOT(c)

else return c

31

Boolean Function Representation
And-Inverter Graph

O Similar algorithm for NEGATIVE_COFACTOR

O Existential and universal quantifications can be
built from AND, OR and COFACTORS

Exercise: Prove (f - g), = f, - g, and (=f) , = —(f,)

Question: What is the worst-case complexity of
performing quantifications over AIGs?

32

Boolean Function Representation
Binary Decision Diagram (BDD)

O A graphical representation of Boolean function
® BDD is a Shannon cofactor tree:
Of=vf, + v f, (Shannon expansion)
Overtices represent decision nodes (i.e. multiplexers)
controlled by variables
Oleaves are constants “0” and “1”
Otwo children of a vertex of f represent two subfunctions f,
and f,,
B Variable ordering restriction and reduction rules make
(ROBDD) representation canonical

o/v\l |

v

-

v

33

Boolean Function Representation
BDD — Canonicalization

O General idea:
B instead of exploring sub-cases by enumerating them in time, try to
store sub-cases in memory
O KEY: two hashing mechanisms:

= unique table: find identical sub-cases and avoid replication
= computed table: reduce redundant computation of sub-cases

O Represent logic functions as graphs (DAGS):

B many logic functions can be represented compactly - usually better
than SOPs

O Can be made (ROBDD)

B Shift the effort in a Boolean reasoning engine from SAT algorithm to
data representation

O Many logic operations can be performed efficiently on BDD's:

B usually linear in size of input BDDs

B tautology checking and complement operation are constant time
O BDD size critically depends on variable ordering

34

Boolean Function Representation
BDD - Canonicalization

O Directed acyclic graph (DAG)
B one root node, two terminal-nodes, 0 and 1
B each node has two children and is controlled by a variable
O Shannon cofactor tree, except reduced and ordered (ROBDD)

|
O cofactor variables (splitting variables) in the same order along all
paths
X <X <X <..<X
i1 ip i3 in
]
O any node with two identical children is removed
O two nodes with isomorphic BDD'’s are merged
These two rules make any node in an ROBDD represent a distinct
logic function
a f
& ordered not a f
@ o@<c<h) @ g ordered > b
; e g ¢ @ reduce
b4 / L » o\ - _—
o AN 0 1
P oS N 0 1
0 1 0 1 35

Boolean Function Representation
BDD

O Example

f=ab+a'ctbC'd —— G

Same function with two different variable orders 36

Boolean Function Representation
BDD — Canonicity of ROBDD

OO0 Three components make ROBDD canonical
(Bryant 1986):

B unigue nodes for constant “0” and “1”

W identical order of case-splitting variables along
each paths

B a hash table that ensures

O(node(f,) = node(g,)) A (node(f,) = node(g,)) =
node(f) = node(qg)

and provides recursive argument that node(f)
is unique when using the unique hash-table

37

Boolean Function Representation
BDD — Onset Counting

F = b'+a'c’ = ab’+a’cb’+a’c’ (all paths to the 1 node)

O By tracing all paths to the 1 node, we get a cover of pairwise
disjoint cubes

O BDD does not explicitly enumerate all paths; rather it represents
paths by a graph whose size is measures by its nodes

B A DAG can represent an exponential number of paths with a linear
number of nodes

[0 BDDs can be used to efficiently represent sets
B interpret elements of the onset as elements of the set
u fis called the of that set

38

Boolean Function Representation
BDD — ITE Operator

[0 Each BDD node can be written as a triplet: f =
ite(v,g,h) =vg + v'h, whereg=f,and h =f,
meaning if v then g else h

f

! m 0,,,,'«"'\/{‘1

Tl 6 o

(v is top variable of f)

39

Boolean Function Representation
BDD — ITE Operator

O ite(f,g,h) =fg + fh
® ITE operator can implement any two variable logic function. There are 16 such
functions corresponding to all subsets of vertices of B2:

0000 0 0 0

0001 AND(f, g) fg ite(f, g, 0)
0010 f>g fg' ite(f, g', 0)
0011 f f f

0100 f<g f'g ite(f, 0, g)
0101 g o] g

0110 XOR(f, 9) fég ite(f, g', 9)
0111 OR(f, 9) f+g ite(f, 1, g)
1000 NOR(f, g) (f+q) ite(f, 0, @)
1001 XNOR(f, g) feg ite(f, g, 9)
1010 NOT(9) g ite(g, 0, 1)
1011 f>g f+g ite(f, 1, 9")
1100 NOT(f) f ite(f, 0, 1)
1101 f<g f+g ite(f, g, 1)
1110 NAND(f, g) (fg) ite(f, g’, 1)
1111 1 1 1 40

Boolean Function Representation
BDD — ITE Operator

CDRecursive operation of ITE

Ite(f,g,h)

=fg+fh

=v({fg+fh),+v (fg+fh),

=V (fv 9v + f'v hv) + Vv (fv’ Ov +f,v’ hv')
= ite(V’ ite(fv’gv’hv)1 ite(fv”gv"hv’))

M Let v be the top-most variable of BDDs f, g, h

41

Boolean Function Representation
BDD — ITE Operator

O Recursive computation of ITE

Algorithm ITECF, g, h)
if(f == 1) return g
if(f == 0) return h
if(g == h) return g

iT((p = HASH_LOOKUP_COMPUTED_TABLE(T,g,h)) return p
\Y TOP_VARIABLE(T, g, h) // top variable from f,g,h
n ITE(T,,9,.h,) // recursive calls
gn - ITE(fv'igv”h\/’)
if(fn == gn) return gn // reduction
iIT('(p = HASH_LOOKUP_UNIQUE_TABLE(v,fn,gn)) {
p = CREATE_NODE(v,fn,gn) // and insert into UNIQUE_TABLE

3
INSERT _COMPUTED_TABLE(p,HASH KEY{f,g,h})
return p

42

Boolean Function Representation
BDD — ITE Operator

O Example T RN
P F /G H N [
a. II/ a. b\ o ! a 0
Moa g Y eet e
1 b C 0 1 AN .
1/\\0 1/‘0 1/0 S l/ 0 b
o 1 o N
F,G,H,,J,B,C,.D

ite(F, G, H)

ite(a, ite(F, , G,, Hy), ite(F 5, G 5z, H))
ite(a, ite(1, C, H), ite(B, 0, H))

ite(a, C, ite(b, ite(B,, 0, H,), ite(B s, 05, Hy))
ite(a, C, ite(b, ite(, O, 1), ite(0, O, D)))

ite(a, C, ite(b, 0, D))

are pointers

=ite(a, C, J)
Check: F=a+Db

G =ac
H=b+d

ite(F, G, H) = (a + b)(ac) + a'b'(b + d) = ac + a’b'd

43

Boolean Function Representation
BDD — ITE Operator

O Tautology checking using ITE

Algorithm ITE _CONSTANT(F,g,h) { // returns 0,1, or NC

iIF(TRIVIAL_CASE(f,g,h) return result (0,1, or NC)

if((res = HASH_LOOKUP_COMPUTED_TABLE(f,g,h))) return res

v = TOP_VARIABLE(f,g,h)

i = ITE_CONSTANT(F,,g,,h,)

if(i == NC) {
INSERT_COMPUTED_TABLE(NC, HASH_KEY{f,g,h}) // special table!!
return NC

}

e = ITE_CONSTANT(F,,9,.h,)

if(e == NC) {
INSERT_COMPUTED_TABLE(NC, HASH_KEY{f,g,h})
return NC

}

if(te 1= 1) {
INSERT_COMPUTED_TABLE(NC, HASH_KEY{f,g,h})
return NC

}
INSERT_COMPUTED_TABLE(e, HASH_KEY{f,g,h})
return i;

a4

Boolean Function Representation
BDD — ITE Operator

O Composition using ITE

B Compose is an important operation, e.g. for building the BDD of a circuit
backwards, Compose(F, v, G) : F(v, x) - F(G(x), X), means substitute v = G(x)

Algorithm COMPOSE(F,v,G) {
iF(TOP_VARIABLE(F) > v) return F // F does not depend on v
i F(TOP_VARIABLE(F) == v) return ITE(G,F1,F0)
i = COMPOSE(F1,v,G)
e = COMPOSE(FO,v,G)
return ITE(TOP_VARIABLE(F),i,e)

Note:

1. F1 and FO are the 1-child and O-child of F, respectively

2. G, 1, e are not functions of v

3. If TOP_VARIABLE of F is v, then ITE(G, F1, FO) does the replacement of v by G

Boolean Function Representation
BDD — Implementation Issues

O avoids duplication of existing nodes
B Hash-Table: hash-function(key) = value
B identical to the use of a hash-table in AND/INVERTER circuits

[
hash value [collision
— > > > «—

of key chain

O avoids re-computation of existing results

:

hash value__» No collision chain
of key
45 46
Boolean Function Representation Boolean Function Representation
BDD — Implementation Issues BDD — Implementation Issues
I I
O Unique table : O Computed table
I:':I B Keep a record of (F, G, H) triplets already computed by the ITE
hash index collision operator
of key l chain O software cache (“cache” table)
:‘:| O simply hash-table without collision chain (lossy cache)
% unique ca!:‘.lhe
table and table
®m Before a node ite(v, g, h) is added to BDD database, it is looked up in the elreke ite(F,G,H)
If it is there, then existing pointer to node is used to represent
the logic function. Otherwise, a new node is added to the unique-table and the (F.GH)
new pointer returned.
B Thus a strong canonical form is maintained. The node for f = ite(v, g, h) exists
iff ite(v, g, h) is in the unique-table. There is only one pointer for ite(v, g, h)
and that is the address to the unique-table entry.
B Unique-table allows single multi-rooted DAG to represent all users’ functions index
Then
else
data |
i 1 =
cellision chain
47 48

Boolean Function Representation
BDD — Implementation Issues

Boolean Function Representation
BDD — Implementation Issues

0 Use of computed table O Complemented edges
B BDD packages often use optimized implementations for special ® Combine inverted functions by using complemented edges
operations O similar to AIG
Oe.g. ITE_Constant (check whether the result would be a O reduces memory requirements o
constant) AND_Exist (AND operation with existential O more importantly, makes operations NOT, ITE more efficient
quantification) G G
m All operations need a cache for decent performance _
Olocal cache two different
= for one operation only - cache will be thrown away after DAGs
operation is finished (e.g. AND_Exist)
O special cache for each operation
= does not need to store operation type @
Oshared cache for all operations _
= better memory handling © G only one DAG
= needs to store operation type using complement
pointer
49 50
Boolean Function Representation Boolean Function Representation
BDD — Implementation Issues BDD — Implementation Issues
I I
O Complemented edges O Complemented edges
B To maintain strong canonical form, need to resolve 4 ite(F, F, G) = ite(F, 1, G)
] > g) ite(F, G, F) = ite(F, G, 0)
equivalences: ite(F, G, —F) = ite(F, G, 1)
ite(F, —F, G) = ite(F, 0, G)
ite(F, 1, G) = ite(G, 1, F)
ite(F, 0, G) = ite(—G, 1, —F)
ite(F, G, 0) = ite(G, F, 0)
ite(F, G, 1) = ite(—G, —F, 1)
ite(F, G, —G) = ite(G, F, —F)
To maximize matches on computed table:
1. First argument is chosen with smallest top variable.
2. Break ties with smallest address pointer. (breaks PORTABILITY!)
[| Always choose the ones on left, i.e. the “then” leg

must have no complement edge.

51

ite(F, G, H) = ite (—F, H, G) = —ite (F, =G, —H) = —ite (—F, —H, —G)
Choose the one such that the first and second argument of ite should not be
complement edges (i.e. the first one above)

52

Boolean Function Representation
BDD — Implementation Issues

O Variable ordering — static

M variable ordering is computed up-front based
on the problem structure
m works well for many practical combinational
functions
Ogeneral scheme: control variables first
ODFS order is good for most cases
®m works bad for unstructured problems
Oe.g. using BDDs to represent arbitrary sets
M |ots of ordering algorithms
Osimulated annealing, genetic algorithms
Ogive better results but extremely costly

53

Boolean Function Representation
BDD — Implementation Issues

O Variable ordering — dynamic
B Changes the order in the middle of BDD applications
Omust keep same global order
B Problem: External pointers reference internal nodes!

External reference pointers attached
to application data structures

54

Boolean Function Representation
BDD — Implementation Issues

O Variable ordering — dynamic
Theorem (Friedman):
Permuting any top part of the variable order has no effect on the
nodes labeled by variables in the bottom part.
Permuting any bottom part of the variable order has no effect on the
nodes labeled by variables in the top part.

B Trick: Two adjacent variable layers can be exchanged by keeping the
original memory locations for the nodes

mem, fo I f fi I lfl/ mem,
ﬂv,a / mem, mem, /;b /b\' /b
mems—— g’ \b 4 (— \ 2@ /
Cc cC C C Cc cC C Cc
f

f00 f01 f10 fll f00 f01 f10 11
55

Boolean Function Representation
BDD — Implementation Issues

O Variable ordering — dynamic
B BDD sifting:

Oshift each BDD variable to the top and then to the bottom
and see which position had minimal number of BDD nodes

Oefficient if separate hash-table for each variable

Ocan stop if lower bound on size is worse than the best
found so far

Oshortcut: two layers can be swapped very cheaply if there
is no interaction between them

Oexpensive operation
B grouping of BDD variables:

Ofor many applications, grouping variables gives better
ordering
= e.g. current state and next state variables in state traversal

O grouping variables for sifting

56

Boolean Function Representation
BDD — Implementation Issues

[0 Garbage collection
B Important to free and reuse memory of unused BDD nodes
including
Othose explicitly freed by an external bdd_free operation
Othose temporary created during BDD operations
B Two mechanisms to check whether a BDD is not referenced:
O Reference counter at each node
= increment whenever node gets one more referenced
= decrement when node gets de-referenced
= take care of counter-overflow
OMark and sweep algorithm
= does not need counter
= first pass, mark all BDDs that are referenced
= second pass, free the BDDs that are not marked
= need additional handle layer for external references

57

Boolean Function Representation
BDD — Implementation Issues

O Garbage collection
B Timing is crucial because garbage collection is expensive

Oimmediately when node gets freed

= bad because dead nodes get often reincarnated in
subsequent operations

Oregular garbage collections based on statistics
obtained during BDD operations

B Computed-table must be cleared since not used in
reference mechanism

B Improving memory locality and therefore cache behavior

58

Boolean Function Representation
BDD — Variants

O MDD: Multi-valued DD
® have more then two branches

B can be implemented using a regular BDD package with binary
encoding

O the binary variables for one MV variable do not have to stay together and
thus potentially better ordering

m]

ADD: (Algebraic BDDs) MTBDD
B multi-terminal BDDs
B decision tree is binary
B multiple leaves, including real numbers, sets or arbitrary objects
m efficient for matrix computations and other non-integer applications

O FDD: Free-order BDD
B variable ordering differs
B not canonical anymore

59

Boolean Function Representation
BDD — Variants

O Zero suppressed BDD (ZDD)

B ZBDDs were invented by Minato to efficiently represent sparse
sets. They have turned out to be in implicit methods for
representing primes

m Different reduction rules:

a : eliminate all nodes where then edge and else edge point to
the same node.

o : eliminate all nodes where the then node points to 0.
Connect incoming edges to else node.

m] share equivalent nodes.

Boolean Function Representation
BDD — Variants

Boolean Function Representation
Summary

ZBDDs are canonical given a variable 0 Sum of products
ordering and/ the support set B Good for circuit synthesis
Example O Product of sums
/ B Good for Boolean reasoning
[0 Boolean network
BDD ZBDD if ZBDD if B Generic network
supportis supportis O Good for multi-level circuit synthesis
X1s Xp X11 Xo1 X3 .
B And-inverter graph
O Good for Boolean reasoning
O Binary decision diagram
B Good for Boolean reasoning
ZBDD if
support is
X1y Xy, X3 61 62
Boolean Reasoning
Satisfiability (SAT)

Boolean Reasoning

Reading:
Logic Synthesis in a Nutshell
Section 2

most of the following slides are by
courtesy of Andreas Kuehlmann

63

[0 Boolean reasoning engines need:
B a data structure to represent problem instances
B a decision procedure to decide about SAT or UNSAT

O Fundamental tradeoff

|
Odata structure uniquely represents function
O decision procedure is trivial (e.g., just pointer comparison)
OProblem: size of data structure is in general exponential

|

O systematic search for satisfying assignment
Osize of data structure is linear
OProblem: decision may take an exponential amount of time

64

Boolean Reasoning

SAT

I
O
B branch and bound algorithm
O branching on the assignments of primary inputs only or those of
all variables
= E.g. PODEM vs. D-algorithms in ATPG
O

B circuits or CNF formulas
u is identical to the justification part in
O 1st half of ATPG: justification

= find an input assignment that forces an internal signal to a
required value

O 2nd half of ATPG: propagation

= make a signal change at an internal signal observable at some
outputs (can be easily formulated as SAT over CNF formulas)

65

Boolean Reasoning

SAT vs. Tautology

O

B find a truth assignment to the inputs making a given
Boolean formula true

B NP-complete

B find a truth assignment to the inputs making a given
Boolean formula false

B coNP-complete

[0 SAT and Tautology are dual to each other

B checking SAT on formula ¢ = checking Tautology on
formula —¢, and vice versa

66

Boolean Reasoning

SAT — AIG-based Decision Procedure

[0 General Davis-Putnam procedure

B search for consistent assignment to entire cone of
requested vertex in AIG by systematically trying all
combinations (may be partial)

B keep a queue of vertices that remain to be justified

Opick from the queue and case split on
possible assignments

Ofor each case
= propagate as many implications as possible
= generate more vertices to be justified

= if conflicting assignment encountered, undo all
implications and backtrack

= recur to next vertex from qgueue

67

Boolean Reasoning
SAT — AIG-based Decision Procedure

O General Davis-Putnam procedure
Algorithm SAT(Edge p) {
queue = INIT_QUEUE(p)
if(VIMPLY(p)) return FALSE
return JUSTIFY(queue)
3

Algorithm JUSTIFY(queue) {
i T(QUEUE_EMPTY(queue)) return TRUE
mark = ASSIGNMENT_MARK()
v = QUEUE_NEXT(queue) // decision vertex
iTCIMPLY(NOT(V)) {
iTF(JUSTIFY(queue)) return TRUE
// conflict
UNDO_ASSIGNMENTS (mark)
ifCIMPLY(V)) {
iF(JUSTIFY(queue)) return TRUE
} // conflict
UNDO_ASSIGNMENTS (mark)
return FALSE

Boolean Reasoning
SAT — AIG-based Decision Procedure

O Example

SAT(NOT(9))?? Queue Assignments

@—’@\CD 9 9

1st case for 9:

1 . o
O—— ! 1 9 9

0 1 D=0 7

D= 0 4

@ —®*" - >
conflict ! 12}

- undo all assignments

- backtrack 69

Boolean Reasoning
SAT — AIG-based Decision Procedure

O Example (cont'd)

Queue Assignments
2nd case for 9:
O @ 0 1 5 9
0 o N 6 7
Note: ® A/.@* 0 8
vertex 7 is justified @/./' 1 0 5
by 8->5->7 0 6

1st case for 5:

i
s
L]

Solution cube: 1=x,2=0,3=0

70

Boolean Reasoning
SAT — AIG-based Decision Procedure

O Implication

M Fast implication procedure is key for efficient
SAT solver!

Odon’t move into circuit parts that are not sensitized to
current SAT problem

Odetect conflicts as early as possible

B Table lookup implementation (27 cases):
ONo-implication cases:
X X, 1, 0 0 0
X;Q+x 1’©x X/Q»x X;Q»o 1;@»0 O;O»o
0,O+0 O,O+0 1,@*1

71

Boolean Reasoning
SAT — AIG-based Decision Procedure

O Implication (cont'd)

B Table lookup implementation (27 cases):
OlImplication cases:

0. > X 0 P — x T 1
X’O+X 0’9:)(ng XQ 1;<>+ x’&
X, 1, 1, 1. 0.,

)00 00 Ok OSx 0
OConflict cases:

0, 0 0
x’@l 0~ ! 1” !
OSplit case:

X\A

X’GO

X 1 1
O-1 O-1 1‘;(}»0

0" 0~

72

Boolean Reasoning
SAT — AIG-based Decision Procedure

O Case split
m Different heuristics work well for particular problem classes
m Often is good because it generates
conflicts quickly
B Mixture of and schedule
B Other heuristics:
O pick the vertex with the
Ocount the of the fanout and pick the
vertex with the highest count in either polarity
Orun a phase on all outstanding case splits
and count the number of implications one would get
Opick vertices that are involved in of the circuit

/%:> =07
“small cut”

73

Boolean Reasoning
SAT — AIG-based Decision Procedure

O Learning

B Learning is the process of adding “shortcuts” to the circuit structure
that avoids case splits
O static learning:
= global implications are learned
O dynamic learning:
= learned implications only hold in current part of the search tree
B Learned implications are stores as additional network

B Example (cont'd)
O 1st case for vertex 9 lead to conflict

O If we were to try the same assignment again (e.g. for the next
SAT call), we would get the same conflict => merge vertex 7 with
zero-vertex

(O zero Vertex

O @\H - if rehashing is invoked
0 vertex 9 is simplified and
@f’/@" and merged with vertex 8

74

Boolean Reasoning
SAT — AIG-based Decision Procedure

O Learning - static

B Implications that can be learned structurally from the circuit
O0Add learned structure as circuit

1

Use hash table to find structure in circuit: E:SE:H

Algorithm CREATE_AND(p1,p2) { O<:

. // create new vertex p

iT((p”=HASH_LOOKUP(p1,NOT(p2))) {

LEARN(((p=0)&(p*=0)) = (p1=0)) s

?f((p’:HASHiLOOKUP(NOT(pl),p2)) {

, LEARN(((p=0)&(p~=0)) = (p2=0))

AN

}

Zero Vertex

75

Boolean Reasoning

SAT — AIG-based Decision Procedure

O Example (cont'd)

.. Queue Assignments
2nd case for 9 (original): d

®—’@\ 0 9
7
8
@/./' 1 5
6
2nd case for 9 (with static learning):
@ '@\ 0 1 9
e 7
PO :
1 0 5
6
a
®\,1 Zero Vertex 3

®=0

Solution cube: 1=x,2=x,3=0 76

Boolean Reasoning
SAT — AIG-based Decision Procedure

O Learning — static

B Other learning based on contra-positive:
if (P = Q), then (—-Q = —P) T 0

o= i

foreach vertex v {
mark = ASSIGNMENT _MARK(Q) /'OO
IMPLY (V)
Xx=0 =1 =0 x=1
LEARN_IMPLICATIONS(V) ((x=0={y=D)={y=0= (x=1)
UNDO_ASSIGNMENTS(mark) @
IMPLY (NOT(V))
LEARN_IMPLICATIONS(NOT(V)) T~
UNDO_ASSIGNMENTS(mark) ! 9o
B Problem: learned implications are far too
many =0

O solution: restrict learning to non-
trivial implications and filter
redundant implications

0 Zero Vertex

Boolean Reasoning
SAT — AIG-based Decision Procedure

O Learning — static and recursive
B Compute the set of all implications for both case splits on level i
O Static learning of constants, equivalences
B Intersect both split cases to learn for level i-1
(x=D=(y=DA(x=0)=(y=1) = (y=1)
C 1
1 e X
\®\ - ®<:O/./.O"O ~ T,
@ O_*O O/O/' 0

-

0 X
1

B Apply learning recursively until all case splits exhausted

O recursive learning is complete but very expensive in practice for
levels > 2, 3

O restrict learning level to fixed number— becomes incomplete

assume permanent assignment

78

Boolean Reasoning
SAT — AIG-based Decision Procedure

O Learning — static and recursive

Algorithm RECURSIVE_LEARNCint level) {
iT(v = PICK_SPLITTING_VERTEXQ)) {
mark = ASSIGNMENT_MARK(Q)
IMPLY (V)
IMPL1 = RECURSIVE_LEARN(level+1)
UNDO_ASSIGNMENTS(mark)
IMPLY (NOT(v))
IMPLO = RECURSIVE_LEARN(level+1)
UNDO_ASSIGNMENTS(mark)
return IMPL1 ~ IMPLO
b
else { // completely justified
return IMPLICATIONS
b
}

79

Boolean Reasoning
SAT — AIG-based Decision Procedure

O Learning — dynamic
B Learn implications in a sub-tree of searching
Ocannot simply add permanent structure because not
globally valid
= add and remove learned structure (expensive)
= add branching condition to the learned implication
= of no use unless we prune the condition (conflict learning)

= use implication and assignment mechanism to assign and
undo assigns

= e.g., dynamic recursive learning with fixed recursion level
O Dynamic learning of equivalence relations (Stalmarck
procedure)

= |earn equivalence relations by dynamically rewriting the
formula

80

Boolean Reasonin

SAT — AIG-based Decision Procedure

O Learning — dynamic
B Efficient implementation of
with level 1:
Oconsider both sub-cases in parallel
Ouse 27-valued logic in the IMPLY routine
(levelO-value, levell-choicel,
(0,1,x3, {0,1,x}, {0,1,x})

Oautomatically set learned values for levelO if both levell
choices agree, e.g.,

levell-choice?2)

(%,1,0) X
\ \
@y 0 1\‘0\.\
O<:O \\‘O"o — O \.\O*o — O<O O~o
e e
/Q / /EX’X’l) X/’

assume temporary assignment

Boolean Reasoning

SAT — AIG-based Decision Procedure

O Learning — conflict-based (c.f. structure-based)

u - Learn the situation under which a particular
conflict occurred and assert it to O

O IMPLY will use this “shortcut” to detect similar conflict
earlier

[| An implication graph is a directed Graph

I(G',E), G’ c G are the gates of C with assigned values v,

#unknown, E ¢ G'xG’ are the edges, where each edge

(9,9;) €E reflects an implication for which an assignment

of gate g; leads to the assignment of gate g;.

Circuit: Implication graph:
0 (decision vertex)
- /@0\.@ @
- 0 Q)
0 (decision vertex) 0
Cha m@

1

82

Boolean Reasonin

SAT — AIG-based Decision Procedure

O Learning — conflict-based
B The roots (w/o fanin-edges) of the implication graph

correspond to the decision vertices, the leaves correspond to
the implication frontier

Cut assignment (C))

B There is a strict implication order in the graph from the roots
to the leaves

O We can completely cut the graph at any point and identify value
assignments to the cut vertices, we result in identical implications
toward the leaves

c,=C, =...=C,_,=>C, (C,: decision vertices)

83

Boolean Reasonin

SAT — AIG-based Decision Procedure

I
O Learning — conflict-based

® If an implication leads to a conflict, any cut assignment in the

implication graph between the decision vertices and the conflict will
result in the same conflict!

O\’O\’O

o

(C; = Conflict) = (NOT(Conflict) = NOT(C,;))

B We can learn the complement of the cut assignment as circuit

O find minimal cut in the implication graph | (costs less to learn)
O find dominator vertex if exists

O restrict size of cuts to be learned, otherwise exponential blow-up

84

Boolean Reasoning
SAT — AIG-based Decision Procedure

O Non-chronological backtracking

B If we learned only cuts on decision vertices, only the decision
vertices that are in the support of the conflict are needed

Decision levels: g Decision Tree: 1

4

1
3 "
6
2

B The conflict is fully symmetric with respect to the unrelated
decision vertices!!

O Learning the conflict would prevent checking the symmetric parts
again

85

Boolean Reasoning
SAT — AIG-based Decision Procedure

O Non-chronological backtracking

B We can still avoid exploring symmetric parts of the decision
tree by tracking the decision support vertices of a conflict
m]

B By tracking the implications of the decision vertices we can
skip decision levels during backtrack

0
l \
of
2 %0
A decision levels that cause a conflict
4 /

e Ty

24 (2400 43 {40

86

Boolean Reasoning
SAT — CNF-based Decision Procedure

O CNF

B Product-of-Sums (POS) representation of Boolean
function
B Describes solution using a set of constraints

Overy handy in many applications because new constraints
can be simply added to the list of existing constraints

Overy common in Al community
|

o = (atb’+c)(a'+b+c)(atb'+c) (atb+c)

® SAT on CNF (POS) < TAUTOLOGY on DNF (SOP)

87

Boolean Reasoning

SAT — CNF-based Decision Procedure

O Circuit to CNF conversion
B Encountered often in practical applications
B Naive conversion from circuit to CNF:
O multiply out expressions of circuit until two level structure
O Example: y =x,®X, ®X, ® ... ® X,
= circuit size is linear in the number of variables

O§¢
® o O—

= generated chess-board Karnaugh map
= CNF (or DNF) formula has 2! terms (exponential in the # vars)
B Better approach:
O introduce one variable per circuit vertex

O formulate the circuit as a conjunction of constraints imposed on the vertex
values by the gates

O uses more variables but size of formula is linear in the size of the circuit

88

Boolean Reasoning
SAT — CNF-based Decision Procedure

O Circuit to CNF conversion

B Example
OSingle gate

Q'C|:> (—a + =b + ¢)(a + —c) (b + —c)
b

OConnected gates

(=1 + 2 + 4)(1 + —4) (=2 + —4)

O—®
@ (-2 + =3 + 5) (2 + —5) (3 + —5)
@ ® ::@"0 |:> (2 + =3 + 6) (42 + —6) (3 + —6)
® (—4 + =5 + 7)(4 + —7) (5 + —7)
Justify to “0” (5 + 6 + 8) (=5 + —8) (=6 + —8)
(7 + 8 + 9) (=7 + —9) (=8 + —9)

(—9)

89

Boolean Reasoning
SAT — CNF-based Decision Procedure

O DPLL procedure

Algorithm DPLL(O) {
while ChooseNextAssignment() {
while Deduce() == CONFLICT {
blevel = AnalyzeConflict();
ifT (blevel < 0) return UNSATISFIABLE;
else Backtrack(blevel);
}
}
return SATISFIABLE;
3

ChooseNextAssignment picks next decision variable and assignment
Deduce does Boolean Constraint Propagation (implications)

AnalyzeConflict backprocesses from conflict and produces learnt-clause

Backtrack undoes assignments

90

Boolean Reasoning
SAT — CNF-based Decision Procedure

O DPLL (basic case splitting)
et _—
. c c c
Eﬁ:i i d)) d/ d / d d/ d
(b +-c+ 1)
corcra ||| AN,

Source: Karem A. Sakallah, Univ. of Michigan 91

0 N O O b WDN P

e e

Boolean Reasoning
SAT — CNF-based Decision Procedure

O Implication
B Implications in a CNF formula are caused by

OA unit clause is a CNF term for which all variables
except one are assigned
= the value of that clause can be implied immediately

OExample
clause (a+—b+c)
(a=0) (b=1)=(c=1)

92

Boolean Reasoning
SAT — CNF-based Decision Procedure

O Implication
B Example

Non-implication cases:

1

0 0 X 1 0
“O-1 O»0 YO0 YO0 O-»0 OO0
17 x” 17 o” o~ 0”
All clauses satisfied
1 X X
X;‘Q» X 1:@» X X;‘Q» X :O» 0
Not all clauses satisfied

93

Boolean Reasoning
SAT — CNF-based Decision Procedure

O Implication
B Example (cont'd)

a__ AND
b>o—» ¢ (ma+—b+c) (a+—c) (b+—c)
Implication cases:
(-a + b + c) (a+—|c< y+—|c)
1. 0. X
1&X 1;O—>x X;(}» 0\9}'
0>~ 0 1
)i:@-’o X;O+x ‘9» X‘O»
! < 1‘@»
}X;‘(}o O-1 S5

94

Boolean Reasoning
SAT — CNF-based Decision Procedure

O DPLL (w/ implication)
G+b+)
c+b+)
(ra+ +)
(o +c+d)
a4+ +)
(a+ +)
(b+-c+)
(+ -C +)

00 N O O B WDN P

Source: Karem A. Sakallah, Univ. of Michigan

Boolean Reasoning

SAT — CNF-based Decision Procedure

O Conflict-based learning
B Important detail for cut selection:
ODuring implication processing, record decision level for
each implication
At conflict, select earliest cut such that exactly one node of
the implication graph lies on current decision level
= Either decision variable itself

= Or UIP (“unique implication point”) that represents a
dominator node for current decision level in conflict graph

B By selecting such cut, implication processing will
automatically flip decision variable (or UIP variable) to
its complementary value

96

Boolean Reasoning
SAT — CNF-based Decision Procedure

O Conflict-based learning
B UIP detection
O Store with each implication the decision level, and a time stamp (integer
that is incremented after each decision)

UIP on decision level | has the property that all following implications towards the
conflict have a larger time stamp

= When back processing from conflict, put all implications that are to be processed
on heap, keeping the one with smallest time stamp on top

= If during processing there is only one variable on current decision level on heap,
then that variable must be a UIP

Decision level Learned clause
1

A W N

a1

5 \

UIP on level 5 97

Boolean Reasoning
SAT — CNF-based Decision Procedure

0 DPLL (conflict-based learning)

0 N O Ol WWDN P

Source: Karem A. Sakallah, Univ. of Michigan 98

Boolean Reasoning
SAT — CNF-based Decision Procedure

O Implementation issues
B Clauses are stores in arrays
B Track change-sensitive clauses (two-literal watching)
Oall literals but one assigned ->

Oall literals but two assigned -> clause is
of either literal

Oall other clauses are insensitive and do not need to be
observed

B Learning:
Olearned implications are added to the CNF formula as
additional clauses
= |imit the size of the clause

= limit the “lifetime” of a clause, will be removed after some
time

B Non-chronological back-tracking
Osimilar to circuit case

99

Boolean Reasoning
SAT — CNF-based Decision Procedure

O Implementation issues (cont'd)

B Random restarts:

Ostop after a given number of backtracks
= start search again with modified ordering heuristic
= keep learned structures !

Overy effective for satisfiable formulas, often also effective
for unsat formulas

B |Learning of equivalence relations:

Oif (a = b) A (b = a), then (a = b)

Overy powerful for formal equivalence checking
B Incremental SAT solving

Osolving similar CNF formulas in a row

O share learned clauses

100

