Logic Synthesis and
Veritication I

Jie-Hong Roland Jiang
NI

/\\
Department of Electrical Engineering ‘\
National Taiwan University

Fall 2013

SOPs and Incompletely

Specified Functions I
o I

Reading:
Logic Synthesis in a Nutshell
Section 2

most of the following slides are by
courtesy of Andreas Kuehlmann

2

Boolean Function Representation

Sum of Products
0 A function can be represented by a (products):
B Eg.,f=ab + ac+ bc

Since each cube is a product of literals, this is a
(SOP) representation

0 An SOP can be thought of as a set of cubes F
B E.g., F = {ab, ac, bc}

OO0 A set of cubes that represents f is called a of f
® Eg.,

F,={ab, ac, bc} and F,={abc, abc’, ab'c, a’bc} are covers of
f=ab + ac + bc.

List of Cubes (Cover Matrix)

0 We often use a matrix notation to represent a
cover:
B Example
F=ac+cd=

abcd abcd
ac —» 1212 or 1-1-
cd - 2201 --01

OO Each row represents a cube
01 means that the positive literal appears in the cube
00 means that the negative literal appears in the cube

02 (or -) means that the variable does in the
cube. It implicitly represents both O and 1 values.

PLA

0 A PLA is a (multiple-output) function f : B" > B™
represented in SOP form

n=3, m=3 cover matrix

a a b b ¢c ¢

v Y v v abC flefS
RS e
I -11 1 - -
_— — 0-0 -1 -
- - I 111 -1 1
F 00- - -1

|| L__| L]

- l l
f, f,

PLA

0 Each distinct cube appears just once in the AND-
plane, and can be shared by (multiple) outputs in
the OR-plane, e.g., cube (abc)

0 Extensions from single-output to multiple-output
minimization theory are straightforward

SOP

O The cover (set of SOPs) can efficiently represent many
practical logic functions (i.e., for many practical functions,
there exist small covers)

O Two-level minimization seeks the cover of minimum size
(least number of cubes)

bc acC
@ = onset minterm
ab
C Note that each onset minterm is
b “covered” by at least one of the
/ cubes!
- None of the offset minterms is
a covered
7
Irredundant Cube
OLet F = {c,, C,, ..., C, } be a cover for f, i.e.,
f=2",¢
A cube ce Fis if F\{c,} = f
B Example
f=ab + ac + bc
bc ac bc

Not covered
Q ab acQ /

— F\{ab} = f

Prime Cube

O A literal x (a variable or its negation) of cube c € F (cover
of f) is if (F\{c}) u{c} =T,
where c, (cofactor w.r.t. x) is ¢ with literal x of ¢ deleted

0 A cube of F is prime if

O Example
f=xy +xz+yz yz
c = xy; ¢, = x (literal y deleted)
FA\{c}tu{c}=x+xz+yz X

inequivalent to f since / /y
offset vertex is covered -

X

Prime and Irredundant Cover

O Definition 1. A cover is (resp.) if all its
cubes are prime (resp. irredundant)

O Definition 2. A prime (cube) of fis (essential
prime) if there is a onset minterm (essential vertex) in that
prime but not in any other prime

O Definition 3. Two cubes are if they do not have
any minterm in common
mE.g. C,= Xy C, = Yy'z are orthogonal

c,= XY Cc, = yz are not orthogonal

10

Prime and Irredundant Cover

O Example
f = abc + b'd + ¢'d is prime and irredundant.
abc is essential since abcd’eabc, but not in b’d or c’'d or ad

abc

C

L
d cd

a >

Why is abcd not an essential vertex of abc?
What is an essential vertex of abc?
What other cube is essential? What prime is not essential?

11

Incompletely Specified Function

OLletF=(f,d, r): B> {0, 1, *}, where *
represents “don’t care”

B f = onset function f(xX)=1 o F(X)=1
B r = offset function r(x)=1 < F(x)=0
B d = don’t care function d(xX)=1 & F(xX)=*

O (f,d,r) forms a partition of B", i.e,
mf+d+r=B"
m-d=0(-r)=(r) =0 (pairwise disjoint)
(Here we don't distinguish characteristic functions and
the sets they represent)

12

Incompletely Specified Function

0 A completely specified function g is a
cover for F = (f,d,r) if
fcgcf+d
B gr=9
m if xed (i.e. d(x)=1), then g(x) can be O or 1;

if xef, then g(x) = 1; if xer, theng(x) =0
0 We “don’t care” which value g has at xed

13

Prime of Incompletely Specified

Function

] Definition. A cube cis a of F = (f,d,r) if c
f+d (an implicant of f+d), and no other implicant
(of f+d) contains c (i.e., it is simply a prime of
f+d)

O Definition. Cube c; of cover G = {c;} of F = (f,d,r)

IS if f < G\{¢;}; otherwise it is

O Notethatccf+d oo c-r=9g

14

Prime of Incompletely Specified
Function

O Example

Consider logic minimization of F(a,b,c)=(f,d,r) with
f=a'bc’'+ab’c+abc and d = abc’+ab’c’

F,={a’bc’, ab’c, abc}
Expand abc—a

® on 1

off FZ:{a’ a1bC11 ab’C}
don’t care ab’c is redundant
ais prime
F,={a, a'bc’}

Expand a’bc’ — bc’

:

F,={a, bc’}

Checking ot Prime and Irredundancy

Let G be a cover of F = (f,d,r), and D be a cover for d
O ceGis iff
¢ c (GMc}) uD (1)

(Let G' = G\{c¢;} U D. Since c;c G' and f c G c f+d, then ¢, c ¢f+c,d and cf
c G\{c;}. Thus f c G\{c;}.)

O Aliterall € ¢;is if (c\{13}) (= (c),) is not an implicant of F
O A cube c; is a prime of F iff all literals | € c; are prime
Literal | € c; is not prime < (c;), < f+d 2

Note: Both tests (1) and (2) can be checked by tautology (to be explained):
O (G)q=1 (implies ¢; redundant)

O (fud)(ci)I =1 (implies | not prime)
The above two cofactors are with respect to cubes instead of literals

16

(Literal) Cofactor

O Let f : B > B be a Boolean function, and x= (X;, X,, ..., Xg)
the variables in the support of f; the f, of Fby a
literal a = x; or a = —x; IS

O £, (X Xos s X)) = F(Xg, ooy Xy 1, Xingyeens X))

O f . (Xps X5 oy Xp) = F (Xq, ooy Xigs 0 Xigqyees Xn)

O Example L

f=abc + abc f,=bc
<z XD
C C
b /b
a a
17
(Literal) Coftactor

0 The cofactor Cx, of a cube C (representing some
.] . . ;
Boolean function) with respect to a literal x; is

mC if X; and x;" do not appear in C
B C\{x;} Iif x; appears positively in C, i.e., X;€ C
L% if X; appears negatively in C, i.e., x;/ € C
0 Example
C = XX, Xg,
Cx, =C (X, and x,’ do not appear in C)
Cx; = X4’ Xg (X, appears positively in C)

Cx,= (x, appears negatively in C)

18

(Literal) Cofactor

0 Example

F =abc + b'd+ cd
F, =ac’ +cd

(Just drop b everywhere and throw away cubes
containing literal b’)

Cofactor and disjunction commute!

19

Shannon Expansion
Letf: B" > B
f=x; in + X’ fxi,

F is a cover of f. Then
F=XFg+x Fye

We say that f and F are expanded about x;, and
X; Is called the splitting variable

20

Shannon Expansion

OO0 Example
F =ab+ac+bc
F=aF,+a F,
= a (b+c+bc)+a’ (bc)
= ab+ac+abc+a’bc
Cube bc got split into two cubes
acC
bc
¥ |ab C
C C
/" /
a a 21
(Cube) Cotactor
O The fo of f by a cube C is f with the fixed

values indicated by the literals of C

W E.g.,IifC=xXx/,thenx;=1and x;,=0

B For C = X, X,' Xg, fc is just the function f restricted to the
subspace where x;, = xg=1and x,= 0

O Note that f. does not depend on x,,X, Or X5 anymore

(However, we still consider f. as a function of all n
variables, it just happens to be independent of x,,x, and Xg)

m X, f = fXl
OE.g., for f = ac + ac, af, =af=ac and f,=c

22

(Cube) Cotactor

0 The cofactor of the cover F of some function f is
the sum of the cofactors of each of the cubes of F

O If F={c,, C,,..., ¢} is a cover of f, then F.= {(c,),,
(cy)e---» (C) Is a cover of T,

23

Containment vs. Tautology

O A fundamental theorem that connects functional containment and
tautology:

Let c be a cube and f a function. Thencc f < f = 1.

We use the fact that xf, = xf, and f, is independent of x.
(<)

Suppose f,=1. Thencf =fc =c. Thus, ccf.

=)

Suppose c c f. Then f+c=f. In addition, f, = (f+c). = f.+1=1. Thus,
f.=1.

24

Checking of Prime and Irredundancy
(Revisited)

Let G be a cover of F = (f,d,r). Let D be a cover for d
O ceGis iff
¢ c (B¢} uD 1)

(Let G' = G\{c¢;} U D. Since c;c G' and f c G c f+d, then ¢, c ¢f+c,d and cf
c G\{c;}. Thus f c G\{c;}.)

O Aliterall € ¢;is if (c\{1}) (= (c),) is not an implicant of F
O A cube c; is a prime of F iff all literals | € c; are prime
Literal | € c; is not prime < (c¢;), < f+d 2

Note: Both tests (1) and (2) can be checked by tautology (explained):
O (G)=1 (implies ¢; redundant)

O (fud)(ci)I =1 (implies | not prime)
The above two cofactors are with respect to cubes instead of literals

25

Generalized Cofactor

] Definition. Let f, g be completely specified
functions. The of f with
respect to g is the specified function:

CO(f,g)Z(f g,@,fg)

] Definition. Let 3 = (f, d, r) and g be given. Then

co(3,9)=(f-g9,d+Qg,r-g)

26

Shannon vs. Generalized Cofactor

O Let g = Xx; . Shannon cofactor is
fi (Xg Xor ooy X)) = F(Xgy ooy Xiogs 1y Xjsgaeens Xp)

0 Generalized cofactor with respect to g=Xx; is
co(f,x)=(f-x,X,f-x)
] Note that

f-xcfcf-x+Xx="~1+X

In fact f is the of co(f X;)
of the variable x;

27

Shannon vs. Generalized Cofactor

® on
f = abc + abt + abc + abt ‘ ‘ ‘ ‘ of f
./ N ® Don't care
o—eo
7 ,‘ =
0—|— L_:L
o‘/—o/ o0

co(f,a)=(f-a,3,f-a) f, =bc+DbC

28

Shannon vs. Generalized Cofactor

L
‘ co(f,a)=(f-a,a, f-a)
ol o
f
S — e o
‘ - ‘ - ‘
=7 -
VA % o & o<—o

So f-acfcf+a

29

Shannon vs. Generalized Cofactor

X-f,+%-f, = f f=g-co(f,g)+§-co(f,g)
(f.), = fy co(co(f,g),h) = co(f,gh)
(f-g),=",g9, co(f -g,h)=co(f,h)-co(g,h)
(f) =(1) co(f,g) = co(f,q)

We will get back to the use of generalized cofactor later

30

Data Structure for SOP
Manipulation I

most of the following slides are by
courtesy of Andreas Kuehlmann

31

Operation on Cube Lists

O

B take two lists of cubes

B compute pair-wise AND between individual cubes and put result on
new list

B represent cubes in computer words
B implement set operations as bit-vector operations

Algo
C
fo

}

re

rithm AND(List of Cubes Cl,List of Cubes C2) {
=g

reach cl € C1 {

foreach c2 € C2 {

c =cl & c2
C=Cuc
¥
turn C

32

Operation on Cube Lists

I
O
B take two lists of cubes
B computes union of both lists
O
Algorithm OR(List of Cubes C1, List of Cubes C2) {
return C1 u C2
+
O
B remove cubes that are completely covered by other cubes
O complexity is O(m2); m is length of list
B conjoin adjacent cubes (consensus operation)
B remove redundant cubes?
O coNP-complete
O too expensive for non-orthogonal lists of cubes
33
Operation on Cube Lists
I

O

W keep cubes in lists orthogonal
Ccheck for redundancy becomes O(m?)

Cbut lists become significantly larger (worst case:
exponential)

W Example
01-0
01-0 0-1- 1-01
1-01 OR 1-11 001-
0111

1-11

34

Operation on Cube Lists

O

Algorithm ADD CUBE(List of Cubes C, Cube c) {
iT(C = &) return {c}
c”> = TOP(C)
Cres = c-c” /* chopping off minterms may result in multiple cubes */
foreach cres € Cres {
C = ADD_CUBE(C\{c’},cres) u {c’}
by

return C

O How can the above procedure be further improved?
O What about the AND operation, does it gain from orthogonal cube lists?

35
Operation on Cube Lists
O
B apply De’Morgan’s law to SOP
B complement each cube and use AND operation
Example
Input non-orth. orthogonal
01-10 => 1---- => 1----
-0--- 00---
---0- 01-0-
----1 01-11
O

B complement function using the COMPLEMENT operator and
check for emptiness
O We will show that we can do better than that!

36

Tautology Checking

0 Let A be an orthogonal cover matrix, and all cubes of A be
pair-wise distinguished by at least two literals (this can be
achieved by an on-the-fly merge of cube pairs that are
distinguished by only one literal)

Does the following conjecture hold?

?

A=1 < A has arow of all “-"s

This would dramatically simplify the tautology check!

37

Tautology Checking

Algorithm CHECK TAUTOLOGY(List of Cubes C) {
1f(C ==) return FALSE;
i1If(C == {-...-Preturn TRUE; // cube with all “-~
X1 = SELECT_VARIABLE(C)
CO = COFACTOR(C,—X1)
1 T(CHECK _TAUTOLOGY(CO) == FALSE) {
print xi = 0
return FALSE;
bs
Cl = COFACTOR(C,X1)
1 T(CHECK _TAUTOLOGY(C1) == FALSE) {
print xi =1
return FALSE;

}
return TRUE;

38

Tautology Checking

O Implementation tricks
M Variable ordering:

Cpick variable that minimizes the two sub-cases (*-'s
get replicated into both cases)

B Quick decision at leaf:
Creturn TRUE if C contains at least one complete
cube among others (case 1)
Creturn FALSE if number of minterms in onset is < 2"
(case 2)
Creturn FALSE if C contains same literal in every cube
(case 3)

39

Tautology Checking

-1-0
Example |
1-11 —x1
0--- -1-0
v x1 tautology (case 1)
-1-0 --10
--10 —X2 R
--11
| X2 100 ot tautology (case 3)
-—-0 --11
—X3
.10 T——
not tautology (case 3
o (case 3
l X3 X4 E tautology (case 1)
---0 ////J
---1

—% [- - - -] tautology (case 1) 40

Special Functions

O Definition. A functionf: B" > B is with respect
to iff
L{C. ST D SRS) L CCTTTRD SN NS &

O Definition. A functionf: B" —» B is iff any
permutation of the variables in f does not change the
function

Symmetry can be exploited in searching BDD since
fxifj — inxj
- can skip one of four sub-cases
- used in automatic variable ordering for BDDs
41

Special Functions

O Definition. A function f : B »> B is in variable
x; iff

focf
Xi X
B This is equivalent to in x;:

f(m) < f(m")

for all min-term pairs (m-, m*) where

mo=m, j=i
m- =0
m" =1

O Example
(1001, 1011) withi= 3

42

Special Functions

O Similarly for f,cf
f(m7)> f(m")
O A function is in x; if it is positive unate or negative
unate in Xx;
O Definition. A function is if it is unate in each variable
O Definition. A cover F is in x; iff x; ¢ c; for all
cubes c;eF
O Note that a cover of a unate function is not necessarily unate!
(However, there exists a unate cover for a unate function.)
43
Special Functions

0 Example

f —ab+bc+ac

m+ positive unate in a,b
negative unate in c
c
jb f(m)=1 > f(m*)=0
a

44

Unate Recursive Paradigm

0 Key pruning technique is based on exploiting the
properties of functions

M based on the fact that unate leaf cases can be
solved efficiently

0 New case splitting heuristic

m variable is chosen so that the
functions at lower nodes of the recursion tree
become

45

Unate Recursive Paradigm

0 Unate covers F have many extraordinary properties:
B If a prime cover F is minimal with respect to single-
cube containment, all of its cubes are essential primes

O In this case F is the unique minimum cube representation
of its logic function

B A unate cover represents a tautology iff it contains a
cube with no literals, i.e., a single tautologous cube

O This type of implicit enumeration applies to many sub-
problems (prime generation, reduction, complementation,
etc.). Hence, we refer to it as the

46

Unate Recursive Paradigm

1. Create cofactoring tree stopping at unate covers
B choose, at each node, the variable for splitting
B iterate until no binate variable left (unate leaf)

2. “Operate” on the unate cover at each leaf to obtain the result for that leaf.
Return the result

3. At each non-leaf node, merge (appropriately) the results of the two

children. /@\ /O,\
ﬁ .,/©\- /Qv\merge

Main idea: “Operation” on unate leaf is computationally less complex
Operations: complement, simplify, tautology, prime generation, ...

oo

47

Unate Recursive Paradigm

CIBinate select heuristic

M Tautology and other programs based on the
unate recursive paradigm use a heuristic called
to choose the splitting
variable in recursive Shannon expansion

OThe idea is, for a given cover F, choose the variable
which occurs, both positively and negatively, most
often in the cubes of F

48

Unate Recursive Paradigm

O Binate select heuristic

B Example
Unate and non-unate covers: .
abcd IS unate
G = ac+cd’ 1 -1 -
- 10
abcd .
E = ac+c'd+bed’ 1 - 18 IS not unate
- 01
- 11

= Choose c for splitting!

B Binate variables of a cover are those with both 1's and O’s in the
corresponding column

B In the unate recursive paradigm, the BINATE_SELECT heuristic
chooses a (most) binate variable for splitting, which is thus eliminated
from the sub-covers

49

Unate Recursive Paradigm

CDExample
f =ac+cd +bcd

1---

F
~1-0 c © - - 110
unate unate

f =aceé +cd +bcde

unate unate 50

Unate Recursive Paradigm
Unate Reduction

OO0 Let F(x) be a cover. Let (a,c) be a partition of the variables x,
and let

where

1. the columns of A (a unate submatrix) correspond to
variables a of x

2. Tis a matrix of all “-"s

O Theorem. Assume A #1. Then F=1 < F*=1

51

Unate Recursive Paradigm
Unate Reduction

CDExample

.............

[l
o —
=i >
LN @)
|_*:_|
[
I I
| PP, O
P O Rr|O -
[|
- o]

52

Unate Recursive Paradigm
Unate Reduction

0 Example

B Assume A; and A, are unate and have no row of all “-’s.
B Note that A; and A, are unate (single-row sub-matrices)
B Consequently only have to look at D, to test if this is a tautology

53

Unate Recursive Paradigm
Unate Reduction

O

Let A be a non-tautological unate matrix (A=1)
and T is a matrix of all -'s. Then F=1 < F* = 1.

O

Assume F* = 1. Then we can replace F*
by all -’s. Then last row of F becomes a row of all

-"s, so tautology.

54

Unate Recursive Paradigm
Unate Reduction

O
Assume F* z1. Then there is a
minterm m, (in ¢ variables) such that F*,, =0
(cofactor in cube), i.e. m, is not covered by F*.

Similarly, m,; (in a variables) exists where Am1 =0,

i.e. m, is not covered by A. Now the minterm

m,;m, (in the full variable set) satisfies Fimym, = 0.

Since m;ym, is not covered by F, F #1.

55

Unate Recursive Paradigm

Application — Tautology Checking

O Improved tautology check

Algorithm CHECK TAUTOLOGY(List of Cubes C) {
if(C == ©¥) return FALSE;
if(C == {-...-}) return TRUE; // cube with all “-~
C = UNATE_REDUCTION(C)
Xi BINATE_SELECT(C)
CO = COFACTOR(C,—x1i)
i1 F(CHECK_TAUTOLOGY(CO) == FALSE) {
return FALSE;
+
Cl = COFACTOR(C,x1)
i F(CHECK_TAUTOLOGY(C1) == FALSE) {
return FALSE;

¥
return TRUE;

56

Unate Recursive Paradigm

Application — Tautology Checking

57

-1-0 Unate reduction
0 Example T R
not tautology (case 2 and 3)
1-11 —x1
Lo=s -1-0
L x1 tautology (case 1)
_ l _ O - = 1 O
--10 —X2 I
--11
l X2 ~~10] ot tautology (case 3)
--11
---0 —x3
--10 \\\\\\\\\\\\\\$
not tautology (case 3)
o 1q
x3
x4 E tautology (case 1)
---0 /
- —% [----| tautology (case 1)

Unate Recursive Paradigm
Application — Complement

0 We have shown how tautology check (SAT check) can be

implemented recursively using the Bina

ry Decision Tree

O Similarly, we can implement Boolean operations recursively,

e.g. the COMPLEMENT operation:

O Theorem. =X fx + X .
O Proof. _ _
g=x-f +X-f,
f=x-f +X-f,
f.q = _
: }:>g:f
f+g=1

58

Unate Recursive Paradigm
Application — Complement

0 Complement operation on cube list

Algorithm COMPLEMENT(List of Cubes C) {
1T(C contains single cube c) {
Cres = complement _cube(c) // generate one cube per
return Cres // literal 1 in c with -l
by
else {
X1 SELECT_VARIABLE(C)
Co COMPLEMENT (COFACTOR(C,—x1)) A —Xi
Cl COMPLEMENT(COFACTOR(C,x1)) A Xi

return OR(CO,C1)

59

Unate Recursive Paradigm
Application — Complement

O Efficient complement of a unate cover
O ldea:
B variables appear only in one polarity on the original cover
(ab + bc + ac) = (a'+b’)(b'+c’)(a'+c’)

B when multiplied out, a number of products are redundant
a1b1a1 + alb!C! + alclal + alcicl+ b!bla! + b!blcl + b!clal + b!C!C! —_
ab’ + ac + bc

B we just need to look at the combinations for which the
variables cover all original cubes (see the following example)

O this works independent of the polarity of the variables because of
symmetry to the (1,1,1,...,1) case (see the following example)

60

Unate Recursive Paradigm
Application — Complement

OO0 Map (unate) cover matrix F into Boolean matrix B

B
a d e a b c¢c d e
— - 0 - 0O 1 0 1 O
- - 0 0 1 ,0 0 1 1 1
1 - - 1 1 1 0 0 1
- 0 - 1 1 0 1 0 1

convert: “0”,”1”in F to “1” in B (literal is present)
““in Fto“0”in B (literal is not present)

61

Unate Recursive Paradigm
Application — Complement

O Find all minimal column covers of B.

B A column cover is a set of columns J such that for each row i,
Jjed such that B; = 1

O Example
{1,4} is a minimal column cover for matrix B

o L O K
R Ok O
e =

1
1
1
1

0
0
1
=

1o O ~ |

All rows “covered” by at least one 1

62

Unate Recursive Paradigm
Application — Complement

OO0 For each minimal column cover create a cube with opposite
column literal from F

0 Example
By selecting a column cover {1,4}, a'd is a cube of f

a c d e a b c¢c d e
— - 0 - 0O 1 0 1 O
- - 0 0 1 —— 0o 1 1 1
1 - - 1 1 0 0 1
- 0 - 1 0 1 0 1

63

Unate Recursive Paradigm
Application — Complement

O The set of all minimal column covers = cover of f

OO0 Example
a b ¢ d e a b c¢c d e
-1 - 0 - 0O 1 0 1 O
- - 0 0 1 _ , 0 0 1 1 1
1 - - 1 1 1 0 0 1
- 0 - 1 1 0 1 0 1

m {(1.,4), (2,3), (2,5), (4,5)} is the set of all minimal covers.
This translates into:

f=ad+bc+be+de

64

Unate Recursive Paradigm
Application — Complement

O

Let F be a unate cover of f. The set of cubes associated with
the minimal column covers of B is a cube cover of f.

O

We first show that any such cube ¢ generated is in the
offset of f, by showing that the cube c is orthogonal with
any cube of F.

B Note, the literals of c are the complemented literals of F.

OSince F is a unate cover, the literals of F are just the union
of the literals of each cube of F).

W For each cube m;eF, JjeJ such that B;=1.
dJ is the column cover associated with c.

® Thus, (m)—x:>c—;<and(m)1—§:>c—x Thus
mc = J fhusch

65

Unate Recursive Paradigm
Application — Complement

O
We now show that any minterm m e fis contained in some
cube c generated:
B First, m must be orthogonal to each cube of F.

O For each row of F, there is at least one literal of m that
conflicts with that row.

B The union of all columns (literals) where this happens is a
column cover of B

B Hence this union contains at least one minimal cover and the
associated cube contains m.

66

Unate Recursive Paradigm
Application — Complement

0 The unate covering problem finds a minimum
column cover for a given Boolean matrix B

B Unate complementation is one application based on the
unate covering problem

O

Given a matrix B, with B;e{0,1}, find x, with
x;e{0,1}, such that Bx > 1 (ComponentW|se
mequallty) and Z; X; is minimized

B Sometimes we want to minimize
2J CJXJ
where ¢; is a cost associated with column j

67

