Logic Synthesis and
Verification I

Jie-Hong Roland Jiang
LR

/\\
Department of Electrical Engineering I\ g
National Taiwan University

Fall 2013

SOPs and Incompletely
Specified Functions I

Reading:
Logic Synthesis in a Nutshell
Section 2

most of the following slides are by
courtesy of Andreas Kuehlmann

2

Boolean Function Representation

Sum of Products
O A function can be represented by a (products):
B E.g.,f=ab + ac + bc

Since each cube is a product of literals, this is a
(SOP) representation

O An SOP can be thought of as a set of cubes F
m E.g., F = {ab, ac, bc}

O A set of cubes that represents f is called a of f
m E.qg.,

F,={ab, ac, bc} and F,={abc, abc’, ab’c, a’bc} are covers of
f=ab + ac + bc.

List of Cubes (Cover Matrix)

0 We often use a matrix notation to represent a
cover:
B Example
F=ac+cd=

abcd abcd
ac - 1212 or 1-1-
cd »> 2201 --01

O Each row represents a cube
O1 means that the positive literal appears in the cube
00 means that the negative literal appears in the cube

02 (or -) means that the variable does in the
cube. It implicitly represents both 0 and 1 values.

PLA

O A PLA is a (multiple-output) function f : B» - B™
represented in SOP form

n=3, m=3 cover matrix

a abbcc T™=TT
abc T, F,f,
10- 1 - -
-11 1 -
0-0 -1 -
111 -1

00- - -1

f, f, f;

PLA

[0 Each distinct cube appears just once in the AND-
plane, and can be shared by (multiple) outputs in
the OR-plane, e.g., cube (abc)

0 Extensions from single-output to multiple-output
minimization theory are straightforward

SOP

O The cover (set of SOPs) can efficiently represent many
practical logic functions (i.e., for many practical functions,
there exist small covers)

O Two-level minimization seeks the cover of minimum size
(least number of cubes)

bc ac
@ = onset minterm

L ab
c Note that each onset minterm is
b “covered” by at least one of the

/ cubes!
- None of the offset minterms is
a covered

Irredundant Cube

OLet F = {c,, C,, ..., C } be a cover for f, i.e.,

f=2Xk,c¢
A cube cie Fis if F\{c;} = f
B Example

f=ab + ac + bc

bc ac bc
L Not covered
. L ab ac /
b

— F\{ab} = f

Prime Cube

O A literal x (a variable or its negation) of cube ¢ € F (cover
of f) is if (F\{c}) u{ct=f,
where ¢, (cofactor w.r.t. X) is ¢ with literal x of ¢ deleted

O A cube of F is prime if

O Example
f=xy+xz+yz yz
c = xy; ¢, = X (literal y deleted)
FN{c}u{cr=x+xz+yz X

inequivalent to f since / /y
offset vertex is covered -

X

Prime and Irredundant Cover

O Definition 1. A cover is (resp.) if all its
cubes are prime (resp. irredundant)

O Definition 2. A prime (cube) of f is (essential
prime) if there is a onset minterm (essential vertex) in that
prime but not in any other prime

O Definition 3. Two cubes are if they do not have
any minterm in common
mE.g. C,= XYy C, = y'z are orthogonal
c,= XYy c, = yz are not orthogonal

10

Prime and Irredundant Cover

O Example
f=abc + b'd + c'd is prime and irredundant.
abc is essential since abcd’eabc, but not in b’d or c'd or ad

abc

C

i
d od

a

Why is abcd not an essential vertex of abc?
What is an essential vertex of abc?
What other cube is essential? What prime is not essential?

11

Incompletely Specified Function

OLetF=(f,d, r): B> {0, 1, *}, where *
represents “don’t care”

B f = onset function f(X)=1 & F(x)=1
m r = offset function r(x)=1 & F(x)=0
B d = don’t care function d(xX)=1 & F(x)=*

O (f,d,r) forms a partition of B", i.e,
mf+d+r=8B"
mf-d)=(-r)=(d-r) =7 (pairwise disjoint)
(Here we don't distinguish characteristic functions and
the sets they represent)

12

Incompletely Specified Function

0 A completely specified function g is a
cover for F = (f,d,r) if
fcgcf+d
B gr=yg
B if xed (i.e. d(x)=1), then g(x) can be O or 1;
if xef, then g(x) = 1; if xer, then g(x) =0
O We “don’t care” which value g has at xed

13

Prime of Incompletely Specified
Function

O Definition. A cube c is a of F = (f,d,r) if c ¢
f+d (an implicant of f+d), and no other implicant
(of f+d) contains c (i.e., it is simply a prime of
f+d)

O Definition. Cube c; of cover G = {c¢;} of F = (f,d,r)

is if f = G\{c;}; otherwise it is

ONotethatccf+deoc-r=d

14

Prime of Incompletely Specitied
Function

O Example
Consider logic minimization of F(a,b,c)=(f,d,r) with
f=a’bc’+ab’c+abc and d = abc'+ab’c’

F,={a'bc’, ab'c, abc}
Expand abc—a

® on l

off F,={a, a'bc’, ab'c}
don’t care

ab’c is redundant
a is prime
Fs;={a, a'bc’}
Expand a’bc’ — bc’

.

F,={a, bc’}

Checking of Prime and Irredundancy

Let G be a cover of F = (f,d,r), and D be a cover for d
O ceGis iff
cic(G{cHwD @

(Let G' = G\{c;} u D. Since ¢;c G' and f c G c f+d, then ¢; c ¢f+cd and ¢f
c G\{c}. Thus f c G\{c}.)

O Aliteral | € ¢;is if (c\{1}) (= (c),) is not an implicant of F
O A cube ¢;is a prime of F iff all literals | € c; are prime
Literal | € c; is not prime < (¢), < f+d (2)

Note: Both tests (1) and (2) can be checked by tautology (to be explained):
O (G)=1 (implies ¢; redundant)

[m] (fud)(ci)I =1 (implies | not prime)
The above two cofactors are with respect to cubes instead of literals

16

(Literal) Cofactor

O Let f : B » B be a Boolean function, and x= (X, X,, ..., X,,)
the variables in the support of f; the f, of Fby a
literal a = x; or a = —x; IS

O e (Xg5 Xo5 s X0) = F (Xq, oy Xy 1, Xiggsoes X))

O oy Ry Xou ooy X)) = F (Xq, ooy Xiis 04 Xigqyeon, Xn)

O Example o

f=abc + abc f,=bc
<G>
C C
e /b
a a

17

(Literal) Cofactor

0 The cofactor ij of a cube C (representing some
Boolean function) with respect to a literal x; is

mC if x; and x;’ do not appear in C
B C\{x;} if x; appears positively in C, i.e., X;e C
g if X; appears negatively in C, i.e., xi' € C
O Example
C = Xy X, Xgs
Cx, =C (X, and x,’ do not appear in C)
Cx; = X4’ Xg (x, appears positively in C)
Cx,= & (x, appears negatively in C)

18

(Literal) Cofactor

O Example

F=abc + bd + cd
F, = ac’ + cd

(Just drop b everywhere and throw away cubes
containing literal b’)

Cofactor and disjunction commute!

19

Shannon Expansion
Letf: B" - B
f=x; fXi + X’ fxi,

F is a cover of f. Then
F=xF;+X in,

We say that f and F are expanded about x;, and
X; is called the splitting variable

20

Shannon Expansion

(Cube) Cofactor

o Example O The f. of f by a cube C is f with the fixed
F =ab+ac+bc . .
values indicated by the literals of C
F=aF,+aF, B E.g., ifC=xX, thenx;=1and x;=0
= a (b+c+hc)+a’ (bc)
= ab+ac+abc+a’he B For C = x; X, Xg, Tc is just the function f restricted to the
Cube bc got split into two cubes subspace where x; = xg = 1 and x, = 0
O Note that f. does not depend on X,,Xx, Or X5 anymore
ac (However, we still consider f; as a function of all n
bc variables, it just happens to be independent of x;,x, and Xg)
ab
. L c L m x,f= fxl
/ b / b OE.g., for f = ac + a’c, af, =af=ac and f,=c
a a 21 22
(Cube) Cofactor Containment vs. Tautology

O The cofactor of the cover F of some function f is
the sum of the cofactors of each of the cubes of F

O 1f F={c,, c,,..., ¢} is a cover of f, then F.= {(c,).,
(c2)e s (€)} IS a cover of f,

23

O A fundamental theorem that connects functional containment and
tautology:

Let c be a cube and f a function. Thenc c f < f, = 1.

We use the fact that xf, = xf, and f, is independent of x.
(<)

Suppose f. = 1. Then cf = fc =c. Thus, c c f.

=)

Sfuppose ¢ c f. Then f+c=f. In addition, f, = (f+c), = f.+1=1. Thus,
=1.
c

24

Checking of Prime and Irredundancy
(Revisited)

Let G be a cover of F = (f,d,r). Let D be a cover for d
O ceGis iff
cc(G\{cHuvbD @

(Let G' = G\{c} U D. Since ¢;c G' and f c G c f+d, then ¢; c ¢f+cd and c;f
¢ G\{c}. Thus f c G\{c}.)

O Aliteral |l € ¢;is if (c\{13}) (= (c)) isnotan implicant of F
O A cube c;is a prime of F iff all literals | € c; are prime
Literal | € c; is not prime < (¢;), < f+d 2)

Note: Both tests (1) and (2) can be checked by tautology (explained):
O (G)=1 (implies ¢; redundant)

O (fud)(ci)I =1 (implies | not prime)
The above two cofactors are with respect to cubes instead of literals

25

Generalized Cofactor

O Definition. Let f, g be completely specified
functions. The of f with
respect to g is the specified function:

co(f,g)=(f-9,3,f-9)

O Definition. Let 3 = (f, d, r) and g be given. Then

co(3,9)=(f-9,d+g,r-9)

26

Shannon vs. Generalized Cofactor

O Let g = x; . Shannon cofactor is
fr (X Xor oo X0) = F 0K ooy Xin 1, Xiggseey Xp)

0 Generalized cofactor with respect to g=x; is
co(f,x)=(f-x,%,f-x)

O Note that

foxcf,cf-x+x="F+

<

In fact f,_ is the of co(f, x;)
of the variable x; .

27

Shannon vs. Generalized Cofactor

@® on

_ _ Q/
f = abc + abc + abc + abt of f
/‘_—|'
rd

®
/|
P .
‘/ ~ Don't care

==

@
P
o—o o——0

co(f,a)=(f-a,a,f-a) f,=bc+btC

28

Shannon vs. Generalized Cofactor

Shannon vs. Generalized Cofactor

—e
‘/ / B
co(f,a)=(f-a,a,f-a)
/‘ 7/
f—C x-f+X-f, = f=g-co(f,g)+7-co(f,q)
.~ - ~— (f.), =1y co(co(f,g),h) = co(f,gh)
£|_ /| - CI— /| - 0| | (f-9),=f,-9, co(f-g,h) =co(f,h)-co(g,h)
|/ _I‘/ S < .|/ () =() co(f,g9) = co(f,9)
® o—e@
- We will get back to the use of generalized cofactor later
So fracfcf+a
Operation on Cube Lists

Data Structure for SOP

Manipulation I
I

most of the following slides are by

courtesy of Andreas Kuehlmann

31

a
B take two lists of cubes
B compute pair-wise AND between individual cubes and put result on
new list
B represent cubes in computer words
B implement set operations as bit-vector operations

Algorithm AND(List of Cubes C1,List of Cubes C2) {
C=0
foreach cl € C1 {
foreach c2 € C2 {
c=cl & c2
C=Cuc
¥
}

return C

}

32

Operation on Cube Lists

Operation on Cube Lists

m]
B take two lists of cubes D
® computes union of both lists ® keep cubes in lists orthogonal
o Ocheck for redundancy becomes O(m?)
Obut lists become significantly larger (worst case:
Algorithm OR(List _of Cubes C1, List of Cubes C2) { ex onential)
return C1 U C2 p
}
o B Example
B remove cubes that are completely covered by other cubes 01-0
O complexity is O(m?); m is length of list 01-0 0-1- 1-01
B conjoin adjacent cubes (consensus operation) OR =
B remove redundant cubes? 1-01 1-11 001-
O coNP-complete 0111
O too expensive for non-orthogonal lists of cubes
1-11
33 34
Operation on Cube Lists Operation on Cube Lists
I I
o O
_ . B apply De’'Morgan’s law to SOP
Al thm ADD_CUBE(List_of_Cubes C, Cub .
?22& :m@) Fetum({'CS} e e et B complement each cube and use AND operation
c” = TOP(C) Example
Cres = c-c” /* chopping off minterms may result in multiple cubes */ Input non-orth. orthogonal
foreach cres e Cres { 01-10 = 1 _ 1
C = ADD_CUBE(C\{c’}.cres) u {c’} - == T == L=
3 -0--- 00---
return C
} ---0- 01-0-
----1 01-11
O How can the above procedure be further improved?
O What about the AND operation, does it gain from orthogonal cube lists? m]

35

B complement function using the COMPLEMENT operator and
check for emptiness

O We will show that we can do better than that!

36

Tautology Checking

Tautology Checking

[0 Let A be an orthogonal cover matrix, and all cubes of A be Algorithm CHECK_TAUTOLOGY(List of Cubes C) {
pair-wise distinguished by at least two literals (this can be iIf(C == ©) return FALSE;) o
achieved by an on-the-fly merge of cube pairs that are if(C == {-...-Preturn TRUE; // cube with all *-
distinguished by only one literal) X1 = SELECT_VARIABLE(C)
CO = COFACTOR(C,—Xi)
) . i F(CHECK_TAUTOLOGY(CO) == FALSE
Does the following conjecture hold? (print_xi -0 (€0) A
return FALSE;
o) }
A=1 < Ahasarowofall“’s ¢ Cl = COFACTOR(C,Xi)
i F(CHECK_TAUTOLOGY(C1) == FALSE) {
print xi =1
. . . . return FALSE;
This would dramatically simplify the tautology check! }
return TRUE;
}
37 38
Tautology Checking Tautology Checking
. . -1-0
O Implementation tricks Example |,
B Variable ordering: 111 1
Opick variable that minimizes the two sub-cases (“-"s 0 - X P
get replicated into both cases) 1 x1 T tautology (case 1)
-1-0 --10
B Quick decision at leaf: --10 —X2 S
Oreturn TRUE if C contains at least one complete “-” --11 10
cube among others (case 1) | x2 1 not tautology (case 3)
Oreturn FALSE if number of minterms in onset is < 2" -0 -3 —
(case 2) --10 \ 0
ot tautology (case 3)
Oreturn FALSE if C contains same literal in every cube --11
(case 3) lXS
x4 tautology (case 1
o 4 [----J tautology (case 1)
---1

39

—% [----] tautology (case 1) 40

Special Functions

Special Functions

O Definition. A function f : B" —» B is with respect O Definition. A function f : B" — B is in variable

to iff X; iff

F(Xpree X oo Xy e X) = F XXy oo Xy, X)) f.c fxl

L. . . . B This i ival in x:

O Definition. A function f : B" —» B is iff any Is Is equivalent to 1

permutation of the variables in f does not change the f(m)< f(m")

function for all min-term pairs (m-, m*) where

Symmetry can be exploited in searching BDD since m; = m;, j=I
f o= f =0
XX R m =1
1
- can skip one of four sub-cases H %Z)L(gg?l_pliOll) withi= 3
- used in automatic variable ordering for BDDs ’ -
a1 42
Special Functions Special Functions
O Similarly for fXi - f;i OO0 Example
f(m)> f(m")

O A function is in x; if it is positive unate or negative f =ab+bc+ac

unate in x; m* positive unate in a,b

negative unate in ¢
O Definition. A function is if it is unate in each variable c
b f(m)=1 > f(m*)=0

O Definition. A cover F is in x iff x; ¢ c; for all

cubes c;eF a

O Note that a cover of a unate function is not necessarily unate!
(However, there exists a unate cover for a unate function.)

43

a4

Unate Recursive Paradigm

O Key pruning technique is based on exploiting the
properties of functions

B based on the fact that unate leaf cases can be
solved efficiently

O New case splitting heuristic

[| variable is chosen so that the
functions at lower nodes of the recursion tree
become

45

Unate Recursive Paradigm

O Unate covers F have many extraordinary properties:
m If a prime cover F is minimal with respect to single-
cube containment, all of its cubes are essential primes

O1In this case F is the unique minimum cube representation
of its logic function

B A unate cover represents a tautology iff it contains a
cube with no literals, i.e., a single tautologous cube

O This type of implicit enumeration applies to many sub-
problems (prime generation, reduction, complementation,
etc.). Hence, we refer to it as the

46

Unate Recursive Paradigm

1. Create cofactoring tree stopping at unate covers
B choose, at each node, the variable for splitting
B iterate until no binate variable left (unate leaf)
2. “Operate” on the unate cover at each leaf to obtain the result for that leaf.
Return the result
3. At each non-leaf node, merge (appropriately) the results of the two

children. /(@\A /Q\
./@\. ./©\. /Q\merge

Main idea: “Operation” on unate leaf is computationally less complex
Operations: complement, simplify, tautology, prime generation, ...

oo

47

Unate Recursive Paradigm

O Binate select heuristic

B Tautology and other programs based on the
unate recursive paradigm use a heuristic called
to choose the splitting
variable in recursive Shannon expansion

OThe idea is, for a given cover F, choose the variable
which occurs, both positively and negatively, most
often in the cubes of F

48

Unate Recursive Paradigm

Unate Recursive Paradigm

O Binate select heuristic
® Example O Example B
Unate and non-unate covers: — =
L g is Unate f =ac+cd +bcd
G = ac+cd’ 1 -1 -
--10 / 0 1-1 -
1--- F F F=- -}
abcd . ¢ i -1-0 < € ---1 - 110
F = ac+c'd+bcd’ 1 -1 - IS not unate unate unate
- -01
- 110 _
= Choose c for splitting! f =ace +cd +bcde
B Binate variables of a cover are those with both 1's and 0’s in the 1 0
corresponding column 1---0 1 -1 0
B In the unate recursive paradigm, the BINATE_SELECT heuristic ---1- F= - - 0 1 -
chooses a (most) binate variable for splitting, which is thus eliminated -1-01 0 unate -
from the sub-covers % \ -1101
-1-0- 1----
49 unate unate 50
Unate Recursive Paradigm Unate Recursive Paradigm
Unate Reduction Unate Reduction
O Let F(x) be a cover. Let (a,c) be a partition of the variables x, | Example
and let
AicC 1 - 0 1
SR A ; _
T F * AiC 1 1 0 1 1
: F = T‘F* - o — 1 1 - 0
where i - = = 0 - |1
1. the columns of A (a unate submatrix) correspond to - - 1
variables a of x

2. T is a matrix of all “-"s

O Theorem. Assume A #1. Then F=1 < F*=1

51

52

Unate Recursive Paradigm
Unate Reduction

Unate Recursive Paradigm
Unate Reduction

O Example O
A C
01 1
F=1-- oo
A, 10 B, [T F*}
_______ A, A, ‘
____________ Let A be a non-tautological unate matrix (A=1)
____________ Dl and T is a matrix of all -’s. Then F=1 < F* = 1.
0 1
A2 0 0 BZ |
1t Assume F* = 1. Then we can replace F*
B Assume A; and A, are unate and have no row of all “-"s. by all -'s. Then last row of F becomes a row of all
B Note that A; and A, are unate (single-row sub-matrices) “_"g g0 tautology
B Consequently only have to look at D, to test if this is a tautology ! :
53 54
Unate Recursive Paradigm Unate Recursive Paradigm
Unate Reduction Application — Tautology Checking

O

Assume F* 1. Then there is a
minterm m, (in ¢ variables) such that F*, =0
(cofactor in cube), i.e. m, is not covered by F*.
Similarly, m, (in a variables) exists where Aml =0,
i.e. my is not covered by A. Now the minterm
m,;m, (in the full variable set) satisfies Frmym, = 0.
Since m;m, is not covered by F, F #1.

55

O Improved tautology check

Algorithm CHECK_TAUTOLOGY(List_of Cubes C) {
if(C == ©) return FALSE;
if(C = {-...-}) return TRUE; // cube with all “-~
C = UNATE_REDUCTION(C)
xi = BINATE_SELECT(C)
CO = COFACTOR(C,—xi)
iF(CHECK_TAUTOLOGY(CO) == FALSE) {
return FALSE;

}

C1 = COFACTOR(C,xi)

if(CHECK_TAUTOLOGY(C1) == FALSE) {
return FALSE;

return TRUE;

56

Unate Recursive Paradigm
Application — Tautology Checking

-1-0 Unate reduction
OExample| .\ T 0T
not tautology (case 2 and 3)
1-11 _x1
O R
-1-0

] xi tautology (case 1)
1-0 --10
--10 —X2 S
--11

1 x2 =10 not tautology (case 3)

--11
---0 —X3
--10 \
not tautology (case 3)
11
x3

l x4 E] tautology (case 1)
---0 ////]
i —% [----] tautology (case 1)

57

Unate Recursive Paradigm
Application — Complement

O We have shown how tautology check (SAT check) can be
implemented recursively using the Binary Decision Tree

O Similarly, we can implement Boolean operations recursively,
e.g. the COMPLEMENT operation:

O Theorem. f_ =X-

f,+X-f,

O Proof. _ —
g=x-f, +X-f;

f=x-f +X-f

58

Unate Recursive Paradigm
Application — Complement

O Complement operation on cube list

Algorithm COMPLEMENT(List of Cubes C) {
iT(C contains single cube c¢) {
Cres = complement_cube(c) // generate one cube per
return Cres // literal 1 in c with =l

b

else {
xi = SELECT_VARIABLE(C)
CO = COMPLEMENT(COFACTOR(C,—Xi)) A —xi
C1 = COMPLEMENT(COFACTOR(C,xi)) A Xi
return OR(CO,C1)

b

}

59

Unate Recursive Paradigm
Application — Complement

O Efficient complement of a unate cover
O ldea:
B variables appear only in one polarity on the original cover
(ab + bc + ac)' = (a’+b’)(b'+c")(a'+c)

B when multiplied out, a number of products are redundant
aibla1 + aiblcl + alclai + aiclcy+ b!blal + biblcl + blcla1 + b70701 —
ab + ac + bc

B we just need to look at the combinations for which the
variables cover all original cubes (see the following example)

O this works independent of the polarity of the variables because of
symmetry to the (1,1,1,...,1) case (see the following example)

60

Unate Recursive Paradigm
Application — Complement

O Map (unate) cover matrix F into Boolean matrix B

B
a d e a b ¢ d
- - 0 - 0 1 0 1
- - 0 0 12,0 0 1 1
1 - - 1 1 1 0 O
- 0 - 1 1 0 1 o0

convert: “0",”1"in F to “1” in B (literal is present)
“"in Fto“0"inB (literal is not present)

R B B O o

61

Unate Recursive Paradigm
Application — Complement

O Find all minimal column covers of B.

B A column cover is a set of columns J such that for each row i,
Jjedsuch that B; =1

O Example
{1,4%} is a minimal column cover for matrix B

~ B O O
o Lk O K
, O L O
N e =)

1
1
1
1

o O - B

All rows “covered” by at least one 1

62

Unate Recursive Paradigm
Application — Complement

O For each minimal column cover create a cube with opposite

column literal from F

O Example

By selecting a column cover {1,4}, a'd is a cube of

a c d e a b ¢ d
-1 - 0 - 0 1 0 1
- - 0 0 1 —0 0 1 1
1 - - 1 1 1 0 O
- 0 - 1 1 0 1 O

P B P, O ®

63

Unate Recursive Paradigm
Application — Complement

O The set of all minimal column covers = cover of f

O Example
a b c¢c d e a b ¢ d e
-1 - 0 - 0 1 0 1 O
- - 0 0 12 __, 0 O 1 1 1
1 - - 1 1 1 0 0 1
- 0 - 1 1 0 1 0 1

m {(1,4), (2,3), (2,5), (4,5)} is the set of all minimal covers.
This translates into:

f=ad+bc+be+de

64

Unate Recursive Paradigm
Application — Complement

O

Let F be a unate cover of f. The set of cubes associated with
the minimal column covers of B is a cube cover of f.

O

We first show that any such cube ¢ generated is in the
offset of f, by showing that the cube c is orthogonal with
any cube of F.

B Note, the literals of c are the complemented literals of F.

OSince F is a unate cover, the literals of F are just the union
of the literals of each cube of F).
B For each cube m;eF, JjeJ such that B;=1.
0OJ is the column cover associated with c.
B Thus, (m —x:>c— x; and (m;); = X; = ¢;= Xx;. Thus
m,c = 'IJhus cc f.

65

Unate Recursive Paradigm
Application — Complement

a
We now show that any minterm m e fis contained in some
cube ¢ generated:
B First, m must be orthogonal to each cube of F.

OFor each row of F, there is at least one literal of m that
conflicts with that row.

B The union of all columns (literals) where this happens is a
column cover of B

B Hence this union contains at least one minimal cover and the
associated cube contains m.

66

Unate Recursive Paradigm
Application — Complement

O The unate covering problem finds a minimum
column cover for a given Boolean matrix B

B Unate complementation is one application based on the
unate covering problem

O

Given a matrix B, with B;{0,1}, find X, with
x;e{0,1}, such that Bx > 1 (componentW|se
mequallty) and %; x; is minimized

B Sometimes we want to minimize

2 CjX;
where c; is a cost associated with column j

67

