## Logic Synthesis and Verification

## Sequential Synthesis

## Motivation

Overview of Circuit Optimization
$\square$ Pure combinational optimization can be suboptimal since relations across register boundaries are disregarded


## Sequential Optimization Techniques

$\square$ Clock skew scheduling

- balance path delays by adjusting the relative clocking schedule of individual registers
$\square$ Retiming
- balance path delays by moving registers within circuit topology
- can be interleaved with combinational optimization techniques
$\square$ Architectural restructuring
- add sequential redundancy
$\square$ fixed: does not change input/output behavior -flexible: change input output behavior
$\square$ System-level optimization


## Integration in Design Flow

## $\square$ Optimization space

significantly more optimization freedom at a higher level for improving performance, power, area, etc.
$\square$ Distance from physical implementation

- difficult to accurately model impacts on final implementation
- difficult to mathematically characterize optimization space
$\square$ Verification challenge
- departure from combinational comparison model would impede formal equivalence checking
- different simulation behaviors cause acceptance problems
$\square$ Necessity of tight tool integration!


## Sequential Timing Constraints

$\square$ Minimum clock period
$\square \mathrm{t}_{\mathrm{clk}}(\min )=\max \left\{\mathrm{t}_{\mathrm{p}}, \mathrm{t}_{\mathrm{x}}\right\}+\mathrm{t}_{\mathrm{c}}+\mathrm{t}_{\mathrm{su}}$, where $\mathrm{t}_{\mathrm{x}}$ is the time after the active clock edge at which the X inputs are stable


## Sequential Timing Constraints



## Sequential Timing Constraints

$\square$ Hold-time constraint
$\square t_{p}+t_{c}^{\text {min }} \geq t_{h}$



## Clock Skew Scheduling



Skew $=0$
$\mathrm{T}_{\text {cycle }}=14$

$r_{1}, r_{2}, r_{3}$
-5
$r_{4}$
Skew $=5$
$\mathrm{T}_{\text {cycle }}=9$

10

## Clock Skew Scheduling

$\square$ By controlling clock delays on registers, clock frequency may be increased

- Do not change transition and output functions (not the case in retiming)
$\square$ Good for functional verification
- May require sophisticated timing verification
$\square$ Clock skew: clock signal arrives at different registers at different times
- Positive skew: the sending register gets the clock earlier than the receiving register
- Negative skew: the receiving register gets the clock earlier than the sending register


## Clock Skew Scheduling

$\square$ Pros
■ Inexpensive "post synthesis" technique to further reduce clock period

- Combinational design model is preserved
$\square$ Cons
- Setup and hold time constraints must be obeyed
aincluding hold time constraints from scan chain
■ Interleaving with combinational optimizations impossible
- Replication of clocking tree required


## Retiming



## Retiming

$\square$ Optimize sequential circuits by
repositioning registers
■ Move registers so that clock cycle decreases or register count decreases


- Input-output behavior is preserved; however, transition and output functions are changed
 due to the register movement


## Retiming

## $\square$ Pros

■ Only setup time constraint ( 0 clock skew)

- Simple integration with other logical (e.g. combinational) or physical optimizations
$\square$ E.g., iterative retiming and resynthesis
- Easy combination with clock skew scheduling to obtain global optimum


## $\square$ Cons

- Change combinational model of design $\square$ Severe impact on verification methodology
- Inaccurate delay model

■ Computation of equivalent reset state required

## Architectural Retiming




## Architectural Retiming

## $\square$ Pros

- Smooth extension of regular retiming
- Potential to alleviate global performance bottlenecks by adding sequential redundancy and pipelining


## $\square$ Cons

- Significant change of design structure $\square$ substantial impact on verification methodology
■ Flexible architectural restructuring changes I/O behavior $\square$ existing RTL specification methods not always applicable


## Verification Issues

$\square$ Timing verification unchanged
$\square$ Functional verification affected

- Except for clock skew scheduling, sequential optimization does change register (transition) functions
- Traditional combinational equivalence checking not applicable
- Simulation runs not recognizable by designers acceptance problems
- Solution:
$\square$ preserve retime function (mapping function) from synthesis for:
- reducing sequential EC problem back to combinational case " no false positives possible!
- modifying simulation model to reproduce original simulation


## Retiming Circuits

- Objectives:
- Reduce clock cycle time
- Reduce register count (area)
- Reduce power, etc.
$\square$ Input: A netlist of gates and registers



## Retiming Circuits

- Circuit represented as retiming graph $G(V, E)$
[Leiserson and Saxe 1983, 1991]
■ V: vertex set representing logic gates
■ E : edge set representing connections
■ $d(v)=$ delay of gate/vertex $v, \quad(d(v) \geq 0)$
$\square w(e)=$ number of registers on edge $e, \quad(w(e) \geq 0)$


## Retiming Circuits

- Example

Synchronous circuit assumption: every cycle of a circuit has at least one register, i.e., no combinational loop


The host node represents the environment that interacts with the circuit via the primary inputs and outputs


## Retiming Circuits

$\square$ For a path p : $v_{0} \rightarrow v_{1} \rightarrow \cdots v_{k-1} \rightarrow v_{k}$

- Path delay $d(p)=\sum^{k} d\left(v_{i}\right) \quad$ (includes endpoints)
- Path weight $w(p)=\sum_{i=0}^{k-1} w\left(e_{i}\right)$
$\square$ Minimum clock cycle

$$
c=\max _{p: w(p)=0}\{d(p)\}
$$



22

## Retiming Circuits

## $\square$ Atomic operation

- Move registers across a gate in a forward or backward direction


Does not affect gate functionality, but timing

## Retiming Circuits

$\square$ Retiming can be formalized with a retime function $r$ : $V \rightarrow Z$, where $Z$ is the set of integers

- I.e., a retime function performs integer labeling on vertices
$\square$ Weight update after retiming with
- $w_{r}(e)=w(e)+r(v)-r(u)$, for edge $e=(u, v)$
- $w_{r}(p)=w(p)+r(t)-r(s)$, for path $p$ from $s$ to $t$
$\square$ A retiming with some $r$ is legal if $w_{r}(e) \geq 0, \forall e \in E$

$\mathbf{w}_{\mathrm{r}}(\mathbf{u}, \mathrm{v})=3+2-1=4$

$r(u)=-1, r(v)=-1$



## Min-Cycle Retiming

$\square$ Problem Statement: (minimum cycle retiming)
Given $G(V, E)$ with delay function $d$ and weight function $w$, find a legal retiming $r$ so that

$$
c=\max _{p: w_{r}(p)=0}\{d(p)\}
$$

is minimized

- Retiming: two important matrices
- Register weight matrix

$$
W(u, v)=\min \{w(p): u \xrightarrow{p} v\}
$$

- Delay matrix
$D(u, v)=\max \{d(p): u \xrightarrow{p} v, w(p)=W(u, v)\}$


## Min-Cycle Retiming



## Min-Cycle Retiming

$\square$ Assume that we are asked to check if a retiming exists for a clock cycle $\alpha$
$\square$ Legal retiming: $w_{r}(e) \geq 0$ for all e. Hence

$$
\begin{aligned}
& w_{r}(e)=w(e)+r(v)-r(u) \geq 0 \text {, or } \\
& r(u)-r(v) \leq w(e)
\end{aligned}
$$

$\square$ For all paths $\mathrm{p}: \mathrm{u} \rightarrow \mathrm{v}$ such that $\mathrm{d}(\mathrm{p}) \geq \alpha$, we require $\mathrm{w}_{\mathrm{r}}(\mathrm{p}) \geq 1$. Thus

$$
\begin{aligned}
1 & \leq w_{r}(p)=\sum_{i=0}^{k-1} w_{r}\left(e_{i}\right) \\
& =\sum_{i=0}^{k-1}\left[w\left(e_{i}\right)+r\left(v_{i+1}\right)-r\left(v_{i}\right)\right] \\
& =w(p)+r\left(v_{k}\right)-r\left(v_{0}\right) \\
& =w(p)+r(v)-r(u)
\end{aligned}
$$

$\square$ Take the least $w(p)$ (tightest constraint) $r(u)-r(v) \leq W(u, v)-1$ - Note: This is independent of the path from $u$ to $v$, so we just need to apply it to $u, v$ such that $D(u, v)>\alpha$

## Min-Cycle Retiming

## $\square$ Example

| Assume $\alpha=7$ |  |
| :--- | :--- |
| Legality: | D $>7$ : |
| $r(u)-r(v) \leq \mathrm{w}(\mathrm{e})$ | $r(\mathrm{u})-r(\mathrm{v}) \leq \mathrm{W}(\mathrm{u}, \mathrm{v})-1$ |
| $r\left(v_{0}\right)-r\left(v_{1}\right) \leq 2$ | $r\left(v_{0}\right)-r\left(v_{3}\right) \leq 1$ |
| $r\left(v_{1}\right)-r\left(v_{2}\right) \leq 0$ | $r\left(v_{1}\right)-r\left(v_{0}\right) \leq-1$ |
| $r\left(v_{1}\right)-r\left(v_{3}\right) \leq 0$ |  |
| $r\left(v_{2}\right)-r\left(v_{3}\right) \leq 0$ |  |
| $r\left(v_{1}\right)-r\left(v_{3}\right) \leq-1$ |  |
| $r\left(v_{3}\right)-r\left(v_{0}\right) \leq 0$ | $r\left(v_{2}\right)-r\left(v_{0}\right) \leq-1$ |
| $r\left(v_{2}\right)-r\left(v_{3}\right) \leq-1$ |  |

All constraints are in the difference-of-2-variable form and closely related to shortest path problem

## Min-Cycle Retiming

| $\square$ Example |  | Constraint graph |
| :---: | :---: | :---: |
| Legality: $r(u)-r(v) \leq w(e)$ | $\begin{aligned} & \mathrm{D}>7 \text { : } \\ & \mathrm{r}(\mathrm{u})-\mathrm{r}(\mathrm{v}) \leq \mathrm{W}(\mathrm{u}, \mathrm{v})-1 \end{aligned}$ |  |
| $r\left(v_{0}\right)-r\left(v_{1}\right) \leq 2$ | $r\left(v_{0}\right)-r\left(v_{3}\right) \leq 1$ | $0 \mathrm{r}(\mathrm{v}) \bigcirc{ }^{2}{ }^{-1} \mathrm{r}(\mathrm{L})$ |
| $r\left(v_{1}\right)-r\left(v_{2}\right) \leq 0$ | $r\left(v_{1}\right)-r\left(v_{0}\right) \leq-1$ |  |
| $r\left(v_{1}\right)-r\left(v_{3}\right) \leq 0$ | $r\left(v_{1}\right)-r\left(v_{3}\right) \leq-1$ | 1 0,-1 |
| $r\left(v_{2}\right)-r\left(v_{3}\right) \leq 0$ | $r\left(v_{2}\right)-r\left(v_{0}\right) \leq-1$ |  |
| $r\left(v_{3}\right)-r\left(v_{0}\right) \leq 0$ | $r\left(v_{2}\right)-r\left(v_{3}\right) \leq-1$ |  |
| Search shortest path on constraint graph: |  |  |
| Bellman-Ford algorithm $\mathrm{O}(\|\mathrm{V}\|\|\mathrm{E}\|)$ or $\mathrm{O}\left(\|\mathrm{V}\|^{3}\right)$ |  | A solution is $\mathrm{r}\left(\mathrm{v}_{0}\right)=\mathrm{r}\left(\mathrm{v}_{3}\right)=$ |
| A solution exists if and only if there exists no negative weighted cycle |  | $r\left(v_{1}\right)=r\left(v_{2}\right)=-1$ |

## Min-Cycle Retiming

$\square$ To find the minimum cycle time, do a binary search among the entries of the D matrix $\mathrm{O}(\mathrm{V}|\mathrm{E}| \log \mathrm{V} \mid)$


## Min-Cycle Retiming

## Min-Cycle Retiming

$\square$ Theorem: $r$ is a legal retiming on $G$ such that the clock cycle $\mathrm{c} \leq \alpha$ for some constant $\alpha$ if and only if

1. $r\left(v_{h}\right)=0$
2. $r(u)-r(v) \leq w(e)$ for every edge $e(u, v)$
3. $r(u)-r(v) \leq W(u, v)-1$ (i.e. register count $>1$ ) for every ( $u$, v) with $D(u, v)>\alpha$
$\square$ Solve the integer linear programming problem
■ Bellman-Ford method O(|V | ${ }^{3}$ )

## $\square$ Algorithm of optimal retiming:

1. Compute W and D
2. Binary search the minimum achievable clock period by applying Bellman-Ford algorithm to check the satisfication of the prior Theorem
3. Derive $r(v)$ under the minimum achievable clock period found in Step 2
-Complexity $\mathrm{O}\left(|\vee|^{3} \mathrm{lg}|\mathrm{V}|\right)$

## Min-Cycle Retiming

## Min-Area Retiming

- Two more algorithms:

1. Relaxation based

- Repeatedly find critical path
- Retime vertex at end of path by $+1(O(|V||E| \log |V|))$


2. Also, Mixed Integer Linear Program formulation
$\square$ Goal: minimize number of registers used
$\min N_{r}=\sum w_{r}(e)$
$=\sum(w(e)+r(v)-r(u))$
$=\sum_{e \in E} w(e)+\sum_{e u \rightarrow v}(r(v)-r(u))$
$=N+\sum(r(v)-r(u))$
$=N+\sum[r(v)(\# \operatorname{fanin}(v)-\#$ fanout $(v)]$
$=N+\sum_{v \in V} a_{V} r(v)$
where $a_{v}$ is a constant

## Retiming Issues

$\square$ Minimize:
$\square$ Computation of equivalent initial states

- Equivalent initial states may not always exist

$$
\sum_{v \in V} a_{v} r(v)
$$

$\square$ Subject to:

$$
w_{r}(e)=w(e)+r(v)-r(u) \geq 0
$$

$\square$ Note: It is reducible to a flow problem

## Retiming + Clock Scheduling

$\square$ Mathematical formulation ■ $\mathrm{s}: \mathrm{E} \rightarrow \mathrm{R}$, a real edge labeling
$\square \mathrm{s}(\mathrm{e})$ denotes the clock signal delay of all registers of e
$\square$ In addition to the register weight matrix and delay matrix for the maximum delay, we also need the minimum paths delays

```
W(u,v)=min{w(p):u\xrightarrow{}{p}v}
D(u,v) = \underset{~}{p}{d(p):u\xrightarrow{}{p}vv,w(p)=w(u,v)}
D min
```


## Retiming \& Resynthesis

## Retiming \& Resynthesis

-Combine retiming and combinational optimization

- Retime registers such that the circuit has a large combinational logic block for optimization
Resynthesize the combinational logic block with combinational logic minimization techniques

■ Retiming and resynthesis can be iterated $\quad$ Can achieve any state re-encoding
$\square$ Solution Mixed Integer Linear Program (MILP)

## Retiming + Clock Scheduling

$\square$ A valid retiming and clock skew schedule is an assignment to $r$ and $s$ such that:
(1) $w_{r} \geq 0$
(2) $\forall\left(u^{\prime}, u\right),\left(v, v^{\prime}\right)$ :

$$
\begin{gathered}
w\left(u^{\prime}, u\right)>0 \wedge w\left(v, v^{\prime}\right)>0 \wedge W(u, v)=0 \Rightarrow \\
D_{\min }(u, v)+s\left(u^{\prime}, u\right)-s\left(v, v^{\prime}\right) \geq T_{\text {hold }} \wedge \\
D(u, v)+s\left(u^{\prime}, u\right)-s\left(v, v^{\prime}\right) \leq T_{\text {clock }}-T_{\text {setup }}
\end{gathered}
$$

$\square$ Example


