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Finite State Machine Model

 M(X,Y,S,S0,,):
 X:  Inputs
 Y:  Outputs
 S:  Current State
 S0: Initial State(s)
 :  X  S  S 

(next-state function)
 :  X  S  Y 

(output function)

X=(x1,x2,…,xn) Y=(y1,y2,…,yk)



S=(s1,s2,…,sm) S’=(s’1,s’2,…,s’m)

D
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Sequential Equivalence Checking
 Definition: Two FSMs M1 and M2 are functionally equivalent iff the 

product machine M1  M2 produces a constant 0 sequence for all 
valid input sequences {X(1),…,X(t)}




D




D

{X(1),X(2),…,X(t)} {0,0,...,0}

y1

y2

Product Machine M1 M2:

M1

M2

(x,(s1,s2)) = 
(x,s1), (x,s2))

(x,(s1,s2)) = 
(x,s1)  (x,s2)
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General Approach to SEC

bad states

i.e. x.(x,s)  0

good states

i.e. x.(x,s) = 0

Product state space S = S1  S2

initial state S0

R: states s with r(s) = 1

Inductive proof of equivalence:

Find subset R  S with characteristic function r: S {0,1} such that:

1. r(s0) = 1 (initial state is in R)

2. (r(s) = 1) r((x,s)) = 1 (all R states cannot go to R’ states)

3. (r(s) = 1) (x,s) = 0 (all R states are good states)

R’= S\R: states s with r(s) = 0
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Sequential Equivalence Checking
 Proving sequential equivalence under state set R

1. Check (by SAT) that initial state S0 is contained in R, i.e. r(s0) 
= 1

2. Check (by SAT) that
 states in R are good states: 

x. r(s)  (x,s), i.e., r(s)  (x,s) unsatisfiable
 all states from R lead only to states in R: 

x. r(s)  r((x,s)), i.e., r(s)  r((x,s)) unsatisfiable

D

r

r
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x

s
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
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Soundness and Completeness

With a candidate state set R we can
 prove equivalence  

that means the method is “sound”

we will not produce “false positives”

 but not disprove equivalence
that means the method is “incomplete”

we may produce “false negatives”
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Inductive State Set Derivation
 Reachability analysis:

 state traversal until no more states can be explored
 forward vs. backward
explicit vs. implicit (symbolic)

 Relying on the design methodology to provide R:
 equivalent state encoding in both machines
 synthesis tool provides hint for R from sequential 

optimization
manual register correspondence
automatic register correspondence

 Combination of them
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Combinational EC
 Industrial equivalence checkers almost exclusively use a 

combinational EC paradigm
 sequential EC is too complex, can only be applied to design 

with a few hundred state bits
 combinational methods scale linearly with the design size for a 

given fixed size and “functional complexity” of the individual 
cones

 Still, pure BDDs and plain SAT solver cannot handle all cones
 BDDs can be built for about 80% of the cones of high-speed 

designs
 less for complex ASICs
 plain SAT blows up on a “miter” structure

 Contemporary method highly exploit structural similarity of 
designs to be compared

12

Combinational EC

 Basic methods:
 random simulation, good for finding mis-compares
 BDD-based with modifications
 structural SAT-based with modifications

x 0?

Miter structure
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Combinational EC
 Memory statistics of BDD-based EC on a PowerPC processor 

design

14

Combinational EC
 Runtime statistics of BDD-based EC on a PowerPC 

processor design



15

Combinational EC

 Evidence of vast existence of structure similarities
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Structure and Verification
 Structure-independent techniques

 Exhaustive simulation
 Decision diagrams

 Structure-dependent techniques
 Graph hashing
 SAT based cutpoint identification

Struture-

independent

techniques

Structure-dependent

techniques

Combined 

methods

Degree of 
Structural 
Difference

Size
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Constrained EC
 Input constraints:

 Non-occurring input values (don’t cares)
 Unreachable states 
 Candidate for R

x 0?MAP

0?

c

x’

x

1. Input Mapping:

2. Output Masking:

Characteristic function for constraint
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Cutpoint-Based EC

 Cutpoints are used to partition the miter

0?

f1

f2

f3

v1

v2

0?

0?

f1

f2

f3

v2

v1

x

Cutpoint guessing:
• Compute net signature with random 
simulator
• Sort signatures + select cutpoints
• Verify and refine cutpoints iteratively
• Verify outputs 
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Cutpoint-Based EC

 False negatives
 Outputs may miscompare for invalid cutpoint values

x

y

z v

v

out
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Constraint:

c = (v  y+z)

What can we do about false negatives:

• constrain input space to c = (v  y+z)

• if v in SUPPORT(out), then out = compose(out, v, fv)
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Cutpoint-Based EC

 Permissible cutpoints
 Apply ATPG:

test for s-a-0 at output 
checks for permissible 
functions

test for s-a-1 at output 
checks for inverse 
permissible functions

 Merge permissible 
cutpoints successively 
from inputs to outputs

Testable for s-a-0 or s-a-1?

x

0?x
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Sequential EC

 If combinational verification paradigm fails (e.g. 
we have no name matching)

 Two options:
Run general sequential verification based on 

state traversal
Very expensive but most general

 Try to match registers automatically
Structural register correspondence
Functional register correspondence

22

Register Correspondence
 Find registers in product machine that implement identical 

or complemented function
 These are matching registers in the two FSMs under 

comparison
 BUT: might be more, we may have redundant registers

 Definition: A register correspondence RC  ss is an 
equivalence relation in the set of registers s
 Can be extended to also include complemented functions
 A register correspondence can be used as a candidate for R:

RC s s 
( , )

( ) ( )
i j

i j

s s RC

r s s s
 

 
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Register Correspondence
 Algorithm REGISTER_CORRESPONDENCE {
RC’ = {(si,sj) | si0 = sj0} 
//start with registers with identical initial values
do {                   

RC   = RC’
r(s) = (si,sj)RC (si  sj)
RC’ = {(si,sj) | (si,sj)RC  i(x,s)=j(x,s)  r(s)}
//i is the transition function of si

} while (RC’ != RC)
return RC

}

 In essence
 The algorithm starts with an initial partitioning with two equivalence classes, one 

for each initial value
 The algorithm computes iteratively the next-state function, assuming that the RC 

is correct
 if yes, fixed point is reached and RC returned
 if no, split equivalence classes along the mis-compares
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Register Correspondence

 Example

Result:

{s1,s4}

{s2,s3,s5}

s1

1 11

1 1

s2 s3

s4
s5

x

s1=1 s2=1

s3=1 s4=1

s5=1
v

s1= x  v

s4= x  v

v1

s2= v

s3= v

s5= v

v2

s1= x  v1

s4= x  v1

v1

s2= v1v2)

s3= v1v2)

s5= v1v2)

v2

Instead of using 
constraint, use 
fresh variable for 
each class
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Register Correspondence

Potential problems:
 In case of mis-comparing designs

Effect of mis-compared cone may ripple through 
entire algorithm and split all equivalence classes until 
they contain only single registers

Difficult to debug since no hint of error location
Solution:

 Relax equivalence criteria
 E.g. structural register correspondence algorithm 

based on support set of registers
 Combine with name mapping, functional/structural 

criteria
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Sequential EC

 In case that combinational EC model fails:
Use generalized register correspondence to 

also consider retiming
In essence, use all internal nets as candidates for 

possible matches

Worst case: general sequential verification
 Prove that the output of the product machine 

is not satisfiable (sequentially)
Special case of general property checking
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Sequential EC
 State traversal

 Forward
 Start from initial state(s)
 Traverse forward to check whether 

"bad" state(s) is reachable
 Backward

 Start from bad state(s)
 Traverse backward to check whether 

initial state(s) can reach them
 Hybrid

 Compute over-approximation of 
reachable states by forward traversal 

 For all bad states in over-
approximation, start backward 
traversal to see whether initial state 
can reach them

S0

S0

S0
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Sequential EC
 Transition relation

 Example

Transition Relation t(s,s’):
1   if there is a transition from s to s'

( , ')
0   otherwise                                    

( , ') .( ' ( , ))

t s s

t s s x s x s


 


  

0 1

X=0

X=1

0,1

( , ) ' ' ( , ) ( , ') .( ' ( , ))

0 0 1 0 0 0

1 0 1 0 0 0

0 1 0 0 1 1

1 1 1 0 0 1

0 0 1 1 1 1

1 0 1 1 1 1

0 1 0 1 0 1

1 1 1 1 1 1

x s x s s s x s t s s x s x s     

.x
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Sequential EC
 Image and pre-image of states

 Example

Image of a set of states r(s):

( , ) .( ( ) ( , '))IMG t r s r s t s s  

Pre-Image of a set of states r(s):

( , ) '.( ( ') ( , '))PREIMG t r s r s t s s  

0 2

1 3

4

r(s) Img(t,r(s))

r(s) = (s  0)  (s  1) {0,1}

t(s,s’) = (s  0)  (s’  2)  {(0,2),
(s  0)  (s’  3)  (0,3),
(s  1)  (s’  3)  (1,3),
(s  2)  (s’  4)  (2,4)}

t  r = (s  0)  (s’  2)  {(0,2),
(s  0)  (s’  3)  (0,3),
(s  1)  (s’  3)  (1,3)}

s.(r  t) = (s’  2)  (s’  3)  {2,3}
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Sequential EC
 Forward state traversal 
Algorithm TRAVERSE_FORWARD(t,  ,S0) {

reached = 
current = S0                            // start from init
while (reached  (reached  current)) { // fixed point
reached = reached  current           // add new states
next    = IMG(t,current)              // one step transition
current = next                        // rename variable

}
return x.((x,s)  reached)

}

 Example

0 1

3 2

4

5 6

Iteration: 1 2 3

Reached: {0} {0,1,2} {0,1,2,3}

Current: {0} {1,2} {1,2,3}

Next: {1,2} {1,2,3} {0,1,2,3}
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Sequential EC
 Forward state traversal 
Algorithm TRAVERSE_BACKWARD(t,  ,S0) {

reached = 
current = x.((x,s)=1)                 // start from bad
while (reached  (reached  current)) { // fixed point
reached  = reached  current          // add new states
previous = PRE_IMG(t,current)         // one step transition
current  = previous                   // rename variable

}
return (S0  reached)

}

 Example

0 1

3 2

4

5 6

Iteration: 1 2 3

Reached: {6} {4,6} {4,5,6}

Current: {6} {4} {4,5}

Previous: {4} {4,5} {4,5,6}
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Sequential EC

 Explicit reachability analysis
 Represent states explicitly (e.g. as bit string) => limited 

capacity
 Use hashtable to find quickly whether state was reached 

before
 Image operation: simple simulation
 Preimage operation: SAT run

 Symbolic reachability analysis
 Represent states and transition relation symbolically

E.g. BDDs, circuits, DNF, etc.
 Use BDD operations to perform image and preimage 

operation (simple AND or AND_EXIST)
 Lots of heuristic improvements to keep BDD size under 

control
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Sequential EC

 Let R(s) be the characteristic function of the set 
of reachable states of the product FSM M12
obtained from forward reachability analysis. Then 
FSMs M1 and M2 are equivalent if and only if 

12(x,s)  R(s) 
is constant 0 for all valuations on input variables 
x and state variables s
 This can be checked in constant time for BDD

34

Sequential EC

 Example
 To check: The equivalence of M1 and M2
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Sequential EC

 Example (cont’d)
 Construct product FSM of M1 and M2
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Sequential EC

 Example (cont’d)
 Forward reachability analysis based on image

computation '( , ) [ , . ( , , ') ( )]s sImg C T x s T x s s C s     
     

s1
t2

s0
t3

s1
t1

s0
t0

R0

R1

R2
R3
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Sequential EC

 Example (cont’d)
 Backward reachability analysis based on pre-image

computation '( , ) [ , '. ( , , ') ( ')]s sPreImg C T x s T x s s C s     
     

s0
t1

s1
t0

s1
t3

R0
R1

s0
t2 s0

t0
s1

t2

0/0

1/0

0/0 1/0

s1

t1

s0

t30/0

1/0

0/01/0

s1

t0

0/1

1/1

0/1

1/1

s0

t1

s0

t2
0/1 1/1

s1

t3

1/10/1
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Sequential EC

 Alternative approach beyond reachability analysis
 Based on state equivalence

Two FSMs are equivalent if and only if their initial states 
are equivalent
 Two states of an FSM are equivalent if starting these two 

states the FSM behaves indistinguishably 

 Explicit algorithm (based on state transition graph 
enumeration) is known 
Used in state minimization where equivalent states must 

be identified

 How about implicit algorithm (based on Boolean 
manipulation) ?
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Sequential EC

 State partitioning based sequential EC
 Construct and multiplexed FSM (disjoint union of the 

state graphs) 

 Example

aux

0

1

M1

M2

0

1

0

1

s0 s1

0/1

1/1

0/0 1/0

t0 t2

0/1

1/1

0/0 1/0

t1

t3
0/0

1/0

0/11/1
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Sequential EC

 State partitioning over multiplexed FSM
 Using BDD-based functional decomposition 

 Example (cont’d)
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Sequential EC

State partitioning based sequential EC
BDD-based functional decomposition

Bound set variables (top): state variables
Free set variables (bottom): others
Cutset: free-set nodes with incoming edges from 

bound-set nodes

 Paths leading to a node in the cutset form an 
equivalence class of states (for an iteration)

 Iterate functional decomposition over 
composed functions 
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Sequential EC

Example (cont’d)
State partitioning

s0

s1t0

t2t1

t3







s0 s1

0/1

1/1

0/0 1/0

t0 t2

0/1

1/1

0/0 1/0

t1

t3
0/0

1/0

0/11/1



43

Sequential EC

Connection between reachability based 
SEC and state partitioning based SEC
Backward reachability analysis can be 

considered as state partitioning in the product 
state space
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Sequential EC

 Summary
 Industrial EC checkers almost exclusively use an 

combinational EC paradigm even for sequential EC
Sequential EC is too complex and can only be applied to 

design with a few hundred state bits
Structure similarity should be identified to simplify 

sequential EC

 Besides sequential equivalence checking, reachability 
analysis is useful in sequential circuit optimization
Recall in sequential optimization that unreachable states

can be used as sequential don’t cares to optimize a 
sequential circuits
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Model Checking

A model checking problem is defined by

M |= 

“implementation”
(system model)

“specification”
(system property)

“satisfies”, “implements”, “refines”
(satisfaction relation)

more detailed more abstract
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Model Checking

M |= 
 Check if system model M satisfies a system property 

 System model M is described with a state transition 
system
 finite state or infinite state

 Temporal property  can be described with three 
orthogonal choices:

1.operational vs. declarative: automata vs. logic
2.may vs. must: branching vs. linear time
3.prohibiting bad vs. desiring good behavior: safety vs. 

liveness

Different choices lead to different model checking 
problems.
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Property Checking
 Assertion-based verification

 Properties are expressed as RTL annotations in terms or assertions 
(“This statement must hold true”)

 E.g. AG(x=y) “For all paths from the initial state and all successor 
states x=y”

 Formal verification methods:
 Exhaustive, do not require simulation vectors 

 Main methods:
 Theorem proving
 Model Checking

 Liveness property checking
 Safety property checking

 Refinement checking
 Equivalence checking
 Bounded property checking
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Property Checking

 Safety property: 
Something “bad” will never 
happen
 Safety property violation 

always has a finite witness 
 if something bad happens 

on an infinite run, then it 
happens already on some 
finite prefix

 Example
 Two processes cannot be 

in their critical sections 
simultaneously

 Liveness property: 
Something “good” will 
eventually happen
 Liveness property violation 

never has a finite witness 
 no matter what happens 

along a finite run, 
something good could still 
happen later

 Example
Whenever process P1 

wants to enter the critical 
section, provided process 
P2 never stays in the 
critical section forever, P1 
gets to enter eventually

For finite state systems, liveness can be converted to safety!
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Safety Property Checking

Safety property checking can be 
formulated as a reachability problem
Are bad states reachable from good states?

Sequential equivalence checking can be 
considered as one kind of safety property 
checking 
M : product machine
  : all states reachable from initial states has 

output 0

50

Safety Property Checking
 Concept:

 Counter example has finite length
 Specification in terms of “bad behavior” that should not happen
 E.g. specify a state with a bad property or a bad output condition
 Handles 95% of practical properties

 Basic approach:
 Express property as formula on state and inputs
 Single reachability analysis sufficient to decide about correctness

Bad state (overflow)

Good state (no overflow)Initial state

Property:

AG(^overflow)

“The history buffer never overflows”
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Liveness Property Checking
 Concept:

 Counter example has infinite length
 Specification in terms of “good behavior” that should always happen
 E.g. AG(req=>AF ack)

 Basic approach:
 Nested reachability analysis according to formula

req

ack

M1 M2 Property:

AG(req=> AF ack)

“A request from M1 will always

be acknowledged by M2”
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Model Checking

Data structure evolution in model 
checking
State graph (late 70s-80s)

Problem size ~104 states

BDD (late 80s-90s) – symbolic model checking
Problem size ~1020 states
Critical resource: memory

SAT (late 90s-) – bounded/unbounded model 
checking
GRASP, SATO, chaff, berkmin
Problem size ~10100 (?) states
Critical resource: CPU time
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Bounded Model Checking

 Bounded Model Checking (Biere, et al., TACAS 
1999):
 Property checking method based on finite unfolding of 

transition relation interleaved with checks of the 
property
Sound:        in its pure form no false positives are possible
Incomplete: cannot guarantee correctness of property

 Basic method:
CNF-based:

 Use CNF-based SAT solver to represent unfolding and proof 
UNSAT for correctness of property

Circuit-based:
 Use ATPG-like reasoning to show untestability

Hybrid:
 Use circuit rewriting and SAT checking interleaved

 e.g. based on AND/INV graphs 
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Bounded Model Checking

Notation
Variables for current and next state: s, s’
 Predicate for transition relation: t(s,s’)

t(s,s’)=1 iff there is a transition from s to s’

 Predicate for initial states: i(s)
i(s)=1 iff s is an initial state

 Predicate for property: p(s)
p(s)=1 iff s satisfies property p

 Predicate for all paths of length k: 
tk(s0,sk) = 0i<k t(si,si+1)
tk(s0,sk)=1 iff there is a transition path of length k

from s0 to sk
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Bounded Model Checking

BMC for length k
BMCk = i(s0)  tk(s0,sk)  p(sk)

BMC loop
Algorithm BMC(max_length){
forall 0  k < max_length do {  

if(SAT(BMCk)) return FAIL
}
return SUCCESS;

}
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Bounded Model Checking

BMC unfolding
 Time-frame expansion

0( )I s

PP P P

1 0 1( , )T s s
2 1 2( , )T s s

1( , )i i iT s s
…

Comments:

• Any SAT technique can be used for checking frames

• Combination with random simulation, parallel runs etc.
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Unbounded Model Checking
 K-step induction [Sheeran, FMCAD 2000]

 Assert correctness of properties proven for previous frames

 Simple path constraint
 No state visited twice

 K-step inductiveness
 In addition to BMCk check also

 Interpolation [McMillan, CAV 2003]

 SAT-based model checking without unrolling [Bradley, 
VMCAI 2011]
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Model Checking

 Summary
 Temporal logic is a variation of mathematical logic and is 

concerned with temporal reasoning
Developed since 1970’s

 Model checking is concerned with algorithmic verification 
of temporal properties
Developed since 1980’s
Hardware model checking techniques are being applied in 

the software domain
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