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Finite State Machine Model

O M(X,Y,S,S9,5,1):

u X ,In’put’s’ X=(Xg, X, 01 Xo) " Y=Y, Y20
B Y: Outputs

B S: Current State  S=(S,,S,,...,S) S'=(s',8"5,.-.,S' )
|

|

SO: Initial State(s)

0: XxS —>S

(next-state function)
B XxS->Y

(output function)

Sequential Equivalence Checking

O Definition: Two FSMs M, and M, are functionally equivalent iff the
product machine M; x M produces a constant O sequence for all
valid input sequences {)%(1) ..... X®O}

XO,X@,... XO} r

Y1
A(X,(81,57)) =

_‘ A1(X,S;) © A2(X,S,)

M, :jD_ {0,0,...,0}
_‘ A(X’(Sl’SZ)) =

(81(,S;), 82(X,S,))




General Approach to SEC

Product state space S=S, x S,

@ bad states
i.e. IX.A(x,S) =0
@
Le. VX.A(X,S) =0 initial state SO
R: states s with r(s) = 1
R’= S\R: states s with r(s) =0
Find subset R — S with characteristic function r: S— {0,1} such that:
1.r(s9) =1 (initial state is in R)

2.(r(s) =1) = r(A(x,8)) =1 (all R states cannot go to R’ states)
3.(r(s)=1) = A(x,s) =0 (all R states are good states)

Sequential Equivalence Checking

O Proving sequential equivalence under state set R
1. Check (by SAT) that initial state SO is contained in R, i.e. r(s°)
=1

2. Check (by SAT) that
O states in R are :
vX. r(s) = -A(X,S), i.e., r(s) A A(X,s) unsatisfiable
O all states from R lead only to states in R:
vX. r(s) = r(A(x,8)), i.e., r(s) A —r(A(x,s)) unsatisfiable
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Soundness and Completeness

0 With a candidate state set R we can

M prove equivalence
Othat means the method is “sound”
COwe will not produce “false positives”

M but not disprove equivalence
COthat means the method is “incomplete”
COwe may produce “false negatives”

Inductive State Set Derivation

O

B state traversal until no more states can be explored
Oforward vs. backward
O explicit vs. implicit (symbolic)

O
B equivalent state encoding in both machines

B synthesis tool provides hint for R from sequential
optimization
OO manual register correspondence
O automatic register correspondence
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Combinational EC

O

Industrial equivalence checkers almost exclusively use a
combinational EC paradigm

B sequential EC is too complex, can only be applied to design
with a few hundred state bits

B combinational methods scale linearly with the design size for a
given fixed size and “functional complexity” of the individual
cones

Still, pure BDDs and plain SAT solver cannot handle all cones

B BDDs can be built for about 80% of the cones of high-speed
designs

B |ess for complex ASICs
B plain SAT blows up on a “miter” structure

Contemporary method highly exploit structural similarity of
designs to be compared

11

Combinational EC

] Basic methods:

B random simulation, good for finding mis-compares
B BDD-based with modifications
B structural SAT-based with modifications

Miter structure

X — ﬁ)D— 0?
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Combinational EC

OO0 Memory statistics of BDD-based EC on a PowerPC processor
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Combinational EC
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O Runtime statistics of BDD-based EC on a PowerPC
processor deS|gn
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Combinational EC

| |
O Evidence of vast existence of structure similarities
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Structure and Verification
| |

O

B Exhaustive simulation
B Decision diagrams

B Graph hashing
B SAT based cutpoint identification

Degree of
Structural
Difference

Struture-
independent
techniques

Structure-dependent
techniques

Combined
methods

Size

v
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Constrained EC

O
B Non-occurring input values (don’t cares)
B Unreachable states
B Candidate for R
1. Input Mapping:  x l D_ 0?
X1
2. Output Masking: X — D_ oo

Characteristic function for constraint //.
17

Cutpoint-Based EC

] Cutpoints are used to partition the miter
X ) 02
\ — 07?
) 0?
Vi
f3
Cutpoint guessing:
fz Vv,  Compute net signature with random
simulator

« Sort signatures + select cutpoints
= Verify and refine cutpoints iteratively
= Verify outputs 18




Cutpoint-Based EC

] False negatives
B Qutputs may miscompare for invalid cutpoint values
v Y0010 1101
X ——a 00 1 Constraint:
01 1 c=(v=y+z)
11011 |1 - *¥ 00 10 11 01
z out 100171] |1 00|11
i 01
D vz 00101101 1111 ]1]1
00 10
01
1 (1)1 1
1011 1
* constrain input space to ¢ = (v = y+z)
« if vin SUPPORT (out), then out = compose(out, v, f)) 19

Cutpoint-Based EC

| |
Tes{able for s-a-0 or s-a-1?

0 Permissible cutpoints

H Apply ATPG:

O test for s-a-0 at output
checks for permissible
functions X

Otest for s-a-1 at output
checks for inverse
permissible functions

B Merge permissible
cutpoints successively
from inputs to outputs

>
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Sequential EC

I If combinational verification paradigm fails (e.g.
we have no name matching)

0 Two options:
B Run general sequential verification based on

state traversal
COVery expensive but most general

M Try to match registers automatically
CStructural register correspondence
COOFunctional register correspondence

21

Register Correspondence

O Find registers in product machine that implement identical
or complemented function

B These are matching registers in the two FSMs under
comparison

B BUT: might be more, we may have redundant registers

O Definition: A register correspondence RC c sxs is an
equivalence relation in the set of registers s

B Can be extended to also include complemented functions
B A register correspondence can be used as a

r(s)= H (SiESj) RCcsxs

v(s',s))eRC

22




Register Correspondence

O Algorithm REGISTER_CORRESPONDENCE {
RC” = {(s',s)) | s'; = si}
//start with registers with identical initial values

do {
RC = RC~
r(s) = Mygi,sjyerc (' = 1) ) ]
RC” = {(s',sd) | (s',s4)eRC A d'(X,8)=31(X,S) A r(s)}

//8" is the transition function of st
1 while (RC” 1= RC)
return RC

}

O In essence

B The algorithm starts with an initial partitioning with two equivalence classes, one
for each initial value
B The algorithm computes iteratively the next-state function, assuming that the RC
is correct
O if yes, fixed point is reached and RC returned
O if no, split equivalence classes along the mis-compares
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Register Correspondence

Instead of using

0 Example constraint, use

fresh variable for

L' {>° each class N

2 s3
D
1 1 1

Result:
{st,s%
{s2,s8,s%}




Register Correspondence

ClPotential problems:

¥ In case of mis-comparing designs

ClEffect of mis-compared cone may ripple through
entire algorithm and split all equivalence classes until
they contain only single registers

CDifficult to debug since no hint of error location
CSolution:
= Relax equivalence criteria

= E.g. structural register correspondence algorithm
based on support set of registers

= Combine with name mapping, functional/structural
criteria

25

Sequential EC

] In case that combinational EC model fails:

M Use generalized register correspondence to
also consider retiming

OIn essence, use all internal nets as candidates for
possible matches

0 Worst case: general sequential verification

M Prove that the output of the product machine
IS not satisfiable (sequentially)

W Special case of general property checking

26




Sequential EC

[0 State traversal

B Forward
O Start from initial state(s)
O Traverse forward to check whether
"bad" state(s) is reachable
B Backward
O Start from bad state(s)

O Traverse backward to check whether
initial state(s) can reach them

B Hybrid
O Compute over-approximation of
reachable states by forward traversal
O For all bad states in over-
approximation, start backward

traversal to see whether initial state
can reach them

Sequential EC

0 Transition relation

0 otherwise
t(s,s) =3Ix.(s'=0(%,9))

+ |1 ifthere is a transition from s to s'
t(s,s") =

O Example
X s O0(x,8) s' s'=0(x,9) t(s,s)=3Ix(s'=(x,9))
0 0 1 0 0 0
10 1 0 0 0 X0
01 0 0 1 1 %@/\:@O =
11 1 0 0 1 0,1
0 0 1 1 1 1
10 1 1 1 1
01 0 1 0 1 [
11 1 1 1 1
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Sequential EC

O Image and pre-image of states
IMG(t,r) =3s.(r(s) at(s,s") PREIMG(t,r) =3s".(r(s") at(s,s")
O Example
r(s) =(s=0)v(s=1) {0,1}
@ ' t(s,s) =(5=0)A(s=2)v {0,2),
. (4) (s=0)A(s'=3) v (0,3),
D (s=1) A(s'=3)v (1,3),
(s=2)A(s'=4) (2,4)}
r(s) Img(t,r(s)) tar =(s=0)A(s'=2) Vv {(0,2),
(s=0)A(s=3)v (0,3),
(s=1)A(s=3) (1,3)}
As.(rat)=(s’=2) v (s'=3) {2,3} .
Sequential EC
O Forward state traversal
Algorithm TRAVERSE FORWARD(t, L ,S0) {
reached = &
current = SO // start from init
while (reached = (reached v current)) { // fixed point
reached = reached v current // add new states
next = IMG(t,current) // one step transition
current = next // rename variable
}
return Ix.(A(X,s) A reached)
}
O Example
@ (V)
o @ Reached: {0} {0,1,23 {0,1,2,3}
Current: {0} {1,2} {1,2,3}

—>2 G Next: 1,20 {123} {0123}
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Sequential EC

I
O Forward state traversal
Algorithm TRAVERSE BACKWARD(t, % ,S0) {
reached = ¢
current = Ix.(A(x,s)=1) // start from bad
while (reached = (reached v current)) { // fixed point
reached = reached v current // add new states
previous = PRE_IMG(t,current) // one step transition
current = previous // rename variable
}
return (SO A reached)
bs
O Example
@ o @ Reached: {6} {4,6} {4,5,6}
\ Current: {6} {4} {4,5}
3)—2) (5) Previous: {4} {4,5} {4,5,6}
31
I

0 Explicit reachability analysis

B Represent states explicitly (e.g. as bit string) => limited

capacity

B Use hashtable to find quickly whether state was reached

before

B Image operation: simple simulation

B Preimage operation: SAT run

0 Symbolic reachability analysis

B Represent states and transition relation symbolically

COE.g. BDDs, circuits, DNF, etc.

B Use BDD operations to perform image and preimage
operation (simple AND or AND_EXIST)

M Lots of heuristic improvements to keep BDD size under

control

32




Sequential EC

] Let R(s) be the characteristic function of the set

of reachable states of the product FSM M,

obtained from forward reachability analysis. Then

FSMs M, and M, are equivalent if and only if
A12(X,S) A R(S)

iIs constant O for all valuations on input variables

X and state variables s
B This can be checked in constant time for BDD

33

Sequential EC

0 Example
B To check: The equivalence of M; and M,

0/ i 0
0/0 1/0 ‘
M1

—
S0 s1
1/1

0/0 " 0/1
0/0 1/0

to ) 11 0/1 2

ca

=l

171 1/0
t1

Ca .3
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Sequential EC

0 Example (cont'd)
B Construct product FSM of M, and M,

0
M1

M2
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Sequential EC

0 Example (cont'd)

B Forward reachability analysis based on image
computation Img(C,T)=[3%,5T(X,5,5)AC5)) s




Sequential EC

0 Example (cont'd)
B Backward reachability analysis based on pre-image
computation Prelmg(C,T)=[3%X,5'T(X,5,5)ACGE ).«
0/1 1/1

o, (&)

11

0/1

0/1 1/1
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Sequential EC

] Alternative approach beyond reachability analysis

B Based on state equivalence

O Two FSMs are equivalent if and only if their initial states
are equivalent

= Two states of an FSM are equivalent if starting these two
states the FSM behaves indistinguishably

B Explicit algorithm (based on state transition graph
enumeration) is known

O Used in state minimization where equivalent states must
be identified

B How about implicit algorithm (based on Boolean
manipulation) ?

38




Sequential EC

] State partitioning based sequential EC

B Construct and multiplexed FSM (disjoint union of the
state graphs)

0 Example
01 ! ~ .

0/0 1/0 ML .
So S1 |
n |
0
t3 r ]
oo 90 o | N |
to ) 11 o ()Y ) ||~~~ D ————————

-

11 1/0 LI

t1 o

L

39

Sequential EC

] State partitioning over multiplexed FSM
B Using BDD-based functional decomposition

Vi V2

0 Example (cont'd)

00 0 0 0 0




Sequential EC

[ State partitioning based sequential EC

® BDD-based functional decomposition
C0Bound set variables (top): state variables
ClFree set variables (bottom): others
CCutset: free-set nodes with incoming edges from
bound-set nodes
M Paths leading to a node in the cutset form an
equivalence class of states (for an iteration)
M Iterate functional decomposition over
composed functions

41

Sequential EC

CDExample (cont'd)
M State partitioning

0/0 1/0

So S1
SO t3 1/1

_ 3

0/0 0/1
-7 0/0 1/0

to 1/1 0/1 2

1/1 1/0
1

42




Sequential EC

0 Connection between reachability based
SEC and state partitioning based SEC

W Backward reachability analysis can be
considered as state partitioning in the product
state space

43

Sequential EC

O Summary
B Industrial EC checkers almost exclusively use an
combinational EC paradigm even for sequential EC

0 Sequential EC is too complex and can only be applied to
design with a few hundred state bits

0 Structure similarity should be identified to simplify
sequential EC

B Besides sequential equivalence checking, reachability
analysis is useful in sequential circuit optimization

ORecall in sequential optimization that unreachable states
can be used as sequential don’t cares to optimize a
sequential circuits

44




Model Checking

CJA model checking problem is defined by
more detailed M |=
“implementation”
(system model)
“satisfies”, “implements”, “refines”
(satisfaction relation)
Model Checking

OM|=o

B Check if system model M satisfies a system property ¢

B System model M is described with a state transition
system

O finite state or infinite state

B Temporal property ¢ can be described with three
orthogonal choices:

1.operational vs. declarative:
2.may Vvs. must:
3.prohibiting bad vs. desiring good behavior:

Different choices lead to different model checking
problems.
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Property Checking

O Assertion-based verification

B Properties are expressed as RTL annotations in terms or assertions
(“This statement must hold true”)

B E.g. AG(x=y) “For all paths from the initial state and all successor
states x=y”

0 Formal verification methods:
B Exhaustive, do not require simulation vectors

O Main methods:

® Theorem proving 15
® Model Checking ©
O Liveness property checking A >, g
O Safety property checking o 5 5
m Refinement checking = g I
B Equivalence checking g 8 8
B Bounded property checking Q o
n o
a)
47
Property Checking
I
O Safety property: O Liveness property:
Something “bad” will never Something “good” will
happen eventually happen
B Safety property violation B Liveness property violation
always has a finite witness never has a finite witness
O if something bad happens O no matter what happens
on an infinite run, then it along a finite run,
happens already on some something good could still
finite prefix happen later
B Example B Example
O Two processes cannot be O Whenever process P1
in their critical sections wants to enter the critical
simultaneously section, provided process

P2 never stays in the
critical section forever, P1
gets to enter eventually

For finite state systems, liveness can be converted to safety!
48




Safety Property Checking

ClSafety property checking can be
formulated as a reachability problem
M Are bad states reachable from good states?

[0Sequential equivalence checking can be
considered as one kind of safety property
checking
B M : product machine

M ¢ : all states reachable from initial states has
output O

49

Satety Property Checking

0 Concept:
B Counter example has finite length
B Specification in terms of “bad behavior” that should not happen
B E.g. specify a state with a bad property or a bad output condition
B Handles 95% of practical properties

[0 Basic approach:
B Express property as formula on state and inputs
B Single reachability analysis sufficient to decide about correctness

Property:
AG("overflow)

“The history buffer never overflows”

® Bad state (overflow)

Initial state ® Good state (no overflow)

50




Liveness Property Checking

0 Concept:
B Counter example has infinite length
B Specification in terms of “good behavior” that should always happen
B E.g. AG(req==AF ack)

[0 Basic approach:
B Nested reachability analysis according to formula

M1 M2 Property:
req . AG(req=> AF ack)
O—. g2 O—. g2 “A request from M1 will always

Cﬁ‘d' _ack Oi*o/' be acknowledged by M2”

51

Model Checking

0 Data structure evolution in model
checking
M State graph (late 70s-80s)
COProblem size —104 states
® BDD (late 80s-90s) — symbolic model checking

OProblem size ~102° states
CCritical resource: memory
B SAT (late 90s-) — bounded/unbounded model
checking
COGRASP, SATO, chaff, berkmin
COProblem size —10100 (?) states
CICritical resource: CPU time
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Bounded Model Checking

0 Bounded Model Checking (Biere, et al., TACAS
1999):

B Property checking method based on finite unfolding of
transition relation interleaved with checks of the
property

O Sound: in its pure form no false positives are possible
O Incomplete: cannot guarantee correctness of property

B Basic method:
O CNF-based:

= Use CNF-based SAT solver to represent unfolding and proof
UNSAT for correctness of property

O Circuit-based:
= Use ATPG-like reasoning to show untestability
O Hybrid:
= Use circuit rewriting and SAT checking interleaved
= e.g. based on AND/INV graphs

53

Bounded Model Checking

CINotation

® Variables for current and next state: s, s’

M Predicate for transition relation: t(s,s’)
Ot(s,s’)=1 iff there is a transition from s to s’

M Predicate for initial states: i(s)
Oi(s)=1 iff s is an initial state

M Predicate for property: p(s)
COp(s)=1 iff s satisfies property p

M Predicate for all paths of length k:

t*(Sp,Sk) = [ogik t(SiSit1)

Otk(sy,S)=1 iff there is a transition path of length k
from s, to s,

54




Bounded Model Checking

CO0BMC for length k
BMC, = i(Sp) A t(S0,5,) A —P(S)

CO0BMC loop
Algorithm BMC(max_ length){

forall 0 < k < max_length do {
1T(SAT(BMC,)) return FAIL

}
return SUCCESS;

}

55

Bounded Model Checking

C0BMC unfolding
M Time-frame expansion

I(So) "_|->171(30’31)'-_|'>-|:2(51’52)"—|':> ':> fi(sillsi)?

—P —P P —P

* Any SAT technique can be used for checking frames
» Combination with random simulation, parallel runs etc.
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Unbounded Model Checking

OO0 K-step induction [Sheeran, FMCAD 2000]
B Assert correctness of properties proven for previous frames
k
tp“(s,.s,) :Osi/\<k p(s.) At(s.,s.,,)
B Simple path constraint
O No state visited twice
k —
Pgimpre (Sy:S) = A P(s) At(S;:8;,0) A Ogé\jgksi i
B K-step inductiveness
O In addition to BMC, check also

inv =tp*(s,,s.) A —p(s,)

O Interpolation [McMillan, CAV 2003]

0 SAT-based model checking without unrolling [Bradley,
VMCAI 2011]
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Model Checking

O Summary
B Temporal logic is a variation of mathematical logic and is
concerned with temporal reasoning
0 Developed since 1970’s

® Model checking is concerned with algorithmic verification
of temporal properties

O Developed since 1980's

O Hardware model checking techniques are being applied in
the software domain

B Reference

OK. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, 1993

COM. Clarke, O. Grumberg, and D. Peled. Model Checking.
MIT Press, 1999
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