Switching Circuits \＆ Logic Design

Jie－Hong Roland Jiang
江介宏
Department of Electrical Engineering National Taiwan University

Fall 2014

§5 Karnaugh Maps

K－map Walks and Gray Codes

Outline

\square Minimum forms of switching functions
-Two- and three-variable Karnaugh maps
-Four-variable Karnaugh maps
-Determination of minimum expressions using essential prime implicants
-Five-variable Karnaugh maps
-Other uses of Karnaugh maps
-Other forms of Karnaugh maps

Limitations of Algebraic Simplification

- Two problems of algebraic simplification

1. Not systematic
2. Difficult to check if a minimum solution is achieved
\square The Karnaugh map method overcomes these limitations

- Typically for Boolean functions with ≤ 5 variables
- The Quine-McCluskey method can deal with even larger functions
- (Subject of Unit 6, skipped)

Minimum Forms of Switching Functions

\square Correspondence between Boolean expressions and logic circuits
■ SOP (POS) can be implemented with two-level AND-OR (OR-AND) gate circuits

- Reducing the number of terms and literals of an SOP expression corresponds to reducing the number of gates and gate inputs
- Combine terms by $\mathrm{XY}{ }^{\prime}+\mathrm{XY}=\mathrm{X}$
\square Eliminate redundant terms by consensus theorem
Minimum SOP is not necessarily unique
- An SOP may be minimal (locally) but not minimum (globally)

ㅁ.g.,

$F=a^{\prime} b^{\prime} c^{\prime}+a^{\prime} b^{\prime} c+a^{\prime} b c^{\prime}+a b^{\prime} c+a b c^{\prime}+a b c$
$=a^{\prime} b^{\prime}+b^{\prime} c+b c^{\prime}+a b$ (minimal but not minimum)
$=a^{\prime} b^{\prime}+b^{\prime}+a c$ (minimum)

Two-Variable Karnaugh Maps

minterm locations

AB	F
00	1
01	1
10	0
11	0

$$
F=A^{\prime} B^{\prime}+A^{\prime} B=A^{\prime}\left(B^{\prime}+B\right)=A^{\prime}
$$

Three-Variable Karnaugh Maps

- 3-variable K-map

minterm locations

ABC	F
000	0
001	0
010	1
011	1
100	1
101	0
110	1
111	0

$$
\begin{aligned}
F & =A^{\prime} B C^{\prime}+A^{\prime} B C+A B^{\prime} C^{\prime}+A B C^{\prime} \\
& =A^{\prime} B+A C^{\prime}+B C^{\prime} \\
& =A^{\prime} B+A C^{\prime}
\end{aligned}
$$

Three-Variable Karnaugh Maps

- 3-variable K-map (zeros omitted)

B

$B C^{\prime}$

$A C^{\prime}$

Three-Variable Karnaugh Maps

- 3-variable K-map

Three-Variable Karnaugh Maps

- 3-variable K-map

Three-Variable Karnaugh Maps

- 3-variable K-map

$$
\begin{aligned}
G & =\left(m_{1}+m_{3}+m_{5}\right)^{\prime} \\
& =\left(M_{0} M_{2} M_{4} M_{6} M_{7}\right)^{\prime}
\end{aligned}
$$

Three-Variable Karnaugh Maps

- 3-variable K-map

Three-Variable Karnaugh Maps

- 3-variable K-map

$$
F=a^{\prime} b^{\prime}+b c^{\prime}+a c=a^{\prime} c^{\prime}+b^{\prime} c+a b
$$

Four-Variable Karnaugh Maps

$\square 4$-variable K-map
$F=a c d+a^{\prime} b+d^{\prime}$

$C D A B$	00	01	11	10
00	0	4	12	8
01	1	5	13	9
11	3	7	15	11
10	2	6	14	10

$\mathrm{cd} \mathrm{ab}$		01	11	10
00	1	1	1	1
01		1		
11		1	1	$1)$
10	1	1	1	1

minterm locations

Four-Variable Karnaugh Maps

-4-variable K-map

Four-Variable Karnaugh Maps

$\square 4$-variable K-map

Four-Variable Karnaugh Maps

Simplify incompletely specified function

- All the 1's must be covered, but X's are optional and are set to 1's only if they will simplify the expression

$f=\sum m(1,3,5,7,9)+\sum d(6,12,13)$

$$
f=a^{\prime} d+c^{\prime} d
$$

Four-Variable Karnaugh Maps

Simplify product-of-sums

- Circle 0's instead of 1 's
- Apply De Morgan's law converting SOP to POS

	00	01	11	10	$y z$	00	01	11	10
00	1	1	0	1	00	1	1	0	1
01	0	0	0	0	- 01	0	0	0	0
11	1	0	1	1	11	1	0	1	1
10	1	0	0	1	10	1	0	0	1
$f=x^{\prime} z^{\prime}+w y z+w^{\prime} y^{\prime} z^{\prime}+x^{\prime} y$					$f^{\prime}=y^{\prime} z+w x z^{\prime}+w^{\prime} x y$				

Determination of Minimum Expressions Using Essential Prime Implicants

\square Implicant

- A product term of a function
\square Any single 1 or any group of 1's on a K-map combined together forms a product term

Prime implicant

- A maximal implicant
\square An implicant that cannot be combined with another term to eliminate a variable
\square All of the prime implicants of a function can be obtained from a K-map by expanding the 1's as much as possible in every possible way

Determination of Minimum Expressions Using Essential Prime Implicants

Example

Determination of Minimum Expressions Using Essential Prime Implicants

\square Determine all prime implicants

- In finding prime implicants, don't cares are treated as 1 's. However, a prime implicant composed entirely of don't cares can never be part of the minimum solution
- Not all prime implicants are needed in forming the minimum SOP

Example

- All prime implicants:
a'b'd, bc', ac, a'c'd, ab, b'cd (composed entirely of don't cares)
- Minimum solution:

$F=a^{\prime} b^{\prime} d+b c^{\prime}+a c$

Determination of Minimum Expressions Using Essential Prime Implicants

Essential prime implicant (EPI)

- A prime implicant that covers some minterm not covered by any other prime implicant
-If a single term covers some minterm and all of its adjacent 1's and X's, then the term is an EPI
- Must be present in the minimum SOP

$f=C D+B D+B^{\prime} C+A C$

$$
f=B D+B^{\prime} C+A C
$$

Determination of Minimum Expressions Using Essential Prime Implicants

\square SOP minimization

1. Select all essential prime implicants
2. Find a minimum set of prime implicants which cover the minterms not covered by the essential prime implicants
\square There may be freedom left after all essential prime implicants are selected (it affects optimality especially for functions with more variables)

Determination of Minimum Expressions Using Essential Prime Implicants

\square Flowchart for determining a minimum SOP using K-map

Determination of Minimum Expressions Using Essential Prime Implicants

-Example

$C D A B$	00	01	11	10
00	X_{0}	1_{4}		18
01		1_{5}	$1{ }_{13}$	19
11		X_{7}	X_{15}	
10		$1{ }_{6}$		$1{ }_{10}$

Step 1: 1_{4} checked
Step 2: 1_{5} checked
Step 3: 1_{6} checked
EPI \rightarrow A'B selected
Step 4: 1_{8} checked
Step 5: $\mathbf{1}_{9}$ checked
Step 6: 1_{10} checked
EPI \rightarrow AB'D' selected Step 7: 1_{13} checked
(up to this point all EPIs determined)
Step 8: AC'D selected to cover remaining 1's

Five-Variable Karnaugh Maps

$\square 5-$ var K-map

minterm locations

Five-Variable Karnaugh Maps

$\square 5-v a r ~ K-m a p$
Expand to eliminate A

Five-Variable Karnaugh Maps

Five-Variable Karnaugh Maps

Other Uses of Karnaugh Maps

-Use K-map to prove the equivalence of two Boolean expressions
■ K-maps are canonical representations of Boolean functions, similar to truth tables
\square Use K-map to perform Boolean operations

- AND, OR, NOT operations can be done over Kmaps (truth tables)

Other Uses of Karnaugh Maps

-Use K-map to facilitate factoring
Identify common literals among product terms

$C D A B$	00	01	11	10
00				
01	1			
11	1		1	
10			1	1

$$
\begin{aligned}
F & =A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B^{\prime} D+A C B+A C D^{\prime} \\
& =A^{\prime} B^{\prime}\left(C^{\prime}+D\right)+A C\left(B+D^{\prime}\right)
\end{aligned}
$$

Other Uses of Karnaugh Maps

-Use K-map to guide simplification

Other Forms of Karnaugh Maps

\square Other conventions (Veitch diagrams)

Other Forms of Karnaugh Maps

-Other conventions (5 -var K-map)
$F=D^{\prime} E^{\prime}+B^{\prime} C^{\prime} D^{\prime}+B C E+A^{\prime} B^{\prime} E^{\prime}+A C D E$

Other Forms of Karnaugh Maps

-Other conventions (5 -var Veitch diagram)

