Switching Circuits \＆ Logic Design

Jie－Hong Roland Jiang
江介宏
Department of Electrical Engineering National Taiwan University

Fall 2014

§12 Registers and Counters

Drawing Hands
M．C．Escher， 1948

http：／／img106．imageshack．us／

Outline

\square Registers and register transfers
\square Shift registers
\square Design of binary counters
\square Counters for other sequences
-Counter design using S-R and J-K flipflops
-Derivation of flip-flop input equations

Registers and Register Transfers

\square Several D flip-flops may be grouped together with a common clock to form a register

Registers and Register Transfers 4-Bit D Flip-Flop Register

Using gated clock data out

With clock enable

Symbol

Registers and Register Transfers
 Data Transfer between Registers

Register A
$=$ FFs A_{1} and A_{2}
Register B
$=$ FFs B_{1} and B_{2}
Register Q
$=F F s Q_{1}$ and Q_{2}
$\left\{\begin{array}{l}\text { If } \mathrm{En}=1 \text { and } \operatorname{Load}=1, \mathrm{Q}=\mathrm{A} \\ \text { If } \mathrm{En}=0 \text { and Load=1, Q=B }\end{array}\right.$

Registers and Register Transfers 8-Bit Register with Tri-State Output

Different from clock enable

Registers and Register Transfers
Data Transfer Using a Tri-State Bus

Registers and Register Transfers Parallel Adder with Accumulator

\square Accumulator:
A register of FFs that can store one number and add a second number to it, leaving the result stored in it

Registers and Register Transfers
 Parallel Adder with Accumulator (cont'd)

- Implementation of adder cells (module-based design)
E.g., using Verilog

Adder cell without MUX

Shift Registers

\square A shift register is a register where binary data can be stored and shifted to the left/right when a shift signal is applied

Shift Registers

Right-Shift Register

I nitial state:

$\mathrm{Q}_{3} \mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}=0101$
SI sequence:
1,1,0,1
Register states:
0101
1010
1101
0110
1011

Shift Registers

Serial-In, Serial-Out Shift Register

\square Serial in

\square Data is shifted into the first flip-flop one bit at a time
\square Serial out

- Data can only be read out of the last flip-flop one bit at a time

Shift Registers

8-Bit Serial-In, Serial-Out Shift Register
Block diagram

Timing diagram

Shift Registers
 Parallel-In, Parallel-Out Shift Register

Block diagram

Application: conversion between parallel and serial data

Shift Registers
 Parallel-In, Parallel-Out Shift Register

Logic diagram

(implementation using FFs and MUXes)

Shift register operation

Inputs		Next State	Action	$\mathrm{Q}_{3}{ }^{+}=\mathrm{Sh} \cdot \mathrm{L} \cdot \mathrm{Q} \cdot \mathrm{Q}_{3}+\mathrm{Sh} \cdot \mathrm{L} \cdot \mathrm{D} \mathrm{D}_{3}+\mathrm{Sh} \cdot \mathrm{SI}$
Sh (Shift)	L (Load)	$\mathrm{Q}_{3}{ }^{+} \mathrm{Q}_{2}{ }^{+} \mathrm{Q}_{1}{ }^{+} \mathrm{Q}_{0}{ }^{+}$		
0	0	$\mathrm{Q}_{3} \mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}$	no change	$\mathrm{Q}_{2}{ }^{+}=S h \cdot L \cdot \mathrm{Q}_{2}+S \mathrm{Sh} \cdot \mathrm{L} \cdot \mathrm{D}_{2}+\mathrm{Sh} \cdot \mathrm{Q}_{3}$
0	1	$\mathrm{D}_{3} \mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{0}$	load	$\mathrm{Q}_{1}^{+}=\mathrm{Sh} \cdot \mathrm{L} \cdot \mathrm{Q}_{1}+\mathrm{Sh} \cdot \mathrm{L} \cdot \mathrm{D}_{1}+\mathrm{Sh} \cdot \mathrm{O}_{3}$
1	X	SI $\mathrm{Q}_{3} \mathrm{Q}_{2} \mathrm{Q}_{1}$	right shift	$\mathrm{Q}_{0}{ }^{+}=S h^{\prime} \cdot \mathrm{L} \cdot \mathrm{Q}_{0}+S \mathrm{Sh}^{\prime} \cdot \mathrm{L} \cdot \mathrm{D}_{0}+\mathrm{Sh} \cdot \mathrm{Q}_{1}$

Shift Registers
 Parallel-In, Parallel-Out Shift Register

Timing diagram
(assume $\mathrm{D}_{3} \mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{0}=1011$ initially and 0000 afterwards)

Shift Registers

Shift Register with Inverted Feedback
\square A circuit that cycles through a fixed sequence of states is called a counter
\square A shift register with inverted feedback is often called a Johnson counter

Flip-flop connections

State graph

Design of Binary Counters

\square We focus on the synchronous counter, where flipflops are synchronized by a common clock pulse

State table

Present State				Next State		
C	B	A	C^{+}	B^{+}	A^{+}	
0	0	0	0	0	1	
0	0	1	0	1	0	
0	1	0	0	1	1	
0	1	1	1	0	0	
1	0	0	1	0	1	
1	0	1	1	1	0	
1	1	0	1	1	1	
1	1	1	0	0	0	

Design of Binary Counters
 D Flip-Flop Implementation

\square State table

Present State			Next State			Flip-Flop Inputs		
C	B	A	C^{+}	B^{+}	A^{+}	D_{c}	D_{B}	D_{A}
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	0
0	1	0	0	1	1	0	1	1
0	1	1	1	0	0	1	0	0
1	0	0	1	0	1	1	0	1
1	0	1	1	1	0	1	1	0
1	1	0	1	1	1	1	1	1
1	1	1	0	0	0	0	0	0

FF inputs are next-state functions in terms of A, B, C

Design of Binary Counters
 D Flip-Flop Implementation

\square Karnaugh maps for D flip-flops

$)^{C} 0 \quad 1$		
BA	0	0
01	1	1
11	0	0
10	1	1

Binary counter with D flip-flops

Design of Binary Counters
 T Flip-Flop Implementation

-State table

Present State			Next State			Flip-Flop Inputs		
C	B	A	C^{+}	B^{+}	A^{+}	T_{C}	T_{B}	T_{A}
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	0	1
1	1	1	0	0	0	1	1	1

FF inputs are next-state functions in terms of A, B, C

Design of Binary Counters T Flip-Flop Implementation

- Karnaugh maps for D flip-flops

$)^{C} 01$		
BA	0	0
01	1	1
11	1	1
10	0	0

\square Binary counter with D flip-flops

Design of Binary Counters

 Up-Down Counter\square State graph and table for up-down counter

$\mathrm{U}=1, \mathrm{D}=0$ count up
$U=0, D=1$ count down

C B A	$\mathrm{C}^{+} \mathrm{B}^{+} \mathrm{A}^{+}$	
	U	D
000	001	111
001	010	000
010	011	001
011	100	010
100	101	011
101	110	100
110	111	101
111	000	110

Design of Binary Counters Up-Down Counter

\square The up-down counter can be implemented using
D FFs and gates through the logic equations
$D_{A}=A^{+}=A \oplus(U+D)$
$\mathrm{D}_{\mathrm{B}}=\mathrm{B}^{+}=\mathrm{B} \oplus\left(\mathrm{UA}+\mathrm{DA}^{\prime}\right)$
$\mathrm{D}_{\mathrm{C}}=\mathrm{C}^{+}=\mathrm{C} \oplus\left(\mathrm{UBA}+\mathrm{DB}^{\prime} \mathrm{A}^{\prime}\right)$

- When $\mathrm{U}=1, \mathrm{D}=0$, they reduce to binary up counter
- When $U=0, D=1$, they reduce to
$D_{A}=A^{+}=A \oplus 1=A^{\prime}$
$\mathrm{D}_{\mathrm{B}}=\mathrm{B}^{+}=\mathrm{B} \oplus \mathrm{A}^{\prime}$
$\mathrm{D}_{\mathrm{C}}=\mathrm{C}^{+}=\mathrm{C} \oplus \mathrm{B}^{\prime} \mathrm{A}^{\prime}$

Design of Binary Counters Up-Down Counter

$$
\begin{aligned}
& D_{A}=A^{+}=A \oplus(U+D) \\
& D_{B}=B^{+}=B \oplus\left(U A+D A^{\prime}\right) \\
& D_{C}=C^{+}=C \oplus\left(U B A+D B^{\prime} A^{\prime}\right)
\end{aligned}
$$

Design of Binary Counters Loadable Counter with Count Enable

$$
\begin{aligned}
& \mathrm{A}^{+}=\mathrm{D}_{\mathrm{A}}=\left(\mathrm{Ld} \cdot \mathrm{~A}+\mathrm{Ld} \cdot \mathrm{D}_{\text {Ain }}\right) \oplus \mathrm{Ld} \cdot \mathrm{Ct} \\
& \mathrm{~B}^{+}=\mathrm{D}_{\mathrm{B}}=\left(\mathrm{Ld} \cdot \mathrm{CL}+\mathrm{Ld} \cdot \mathrm{D}_{\mathrm{Bin}}\right) \oplus \mathrm{Ldd}^{\prime} \cdot \mathrm{Ct} \cdot \mathrm{~A} \\
& \mathrm{C}^{+}=\mathrm{D}_{\mathrm{C}}=\left(\mathrm{Ld} \cdot \mathrm{C}+\mathrm{Ld} \cdot \mathrm{D}_{\mathrm{cin}}\right) \oplus \mathrm{Ld}^{\prime} \cdot \mathrm{Ct} \cdot \mathrm{~B} \cdot \mathrm{~A}
\end{aligned}
$$

Note that CIrN does not appear in these equations. Why not?

Design of Binary Counters
 Loadable Counter with Count Enable

$$
\begin{aligned}
& \mathrm{A}^{+}=\mathrm{D}_{\mathrm{A}}=\left(\mathrm{Ld} \cdot \mathrm{~A}+\mathrm{Ad} \cdot \mathrm{D}_{\text {Ain }}\right) \oplus \mathrm{Ld}^{\prime} \cdot \mathrm{Ct} \\
& \mathrm{~B}^{+}=\mathrm{D}_{\mathrm{B}}=\left(\mathrm{Ld} \cdot \mathrm{~B}+\mathrm{Ld} \cdot \mathrm{D}_{\text {Bin }}\right) \oplus \mathrm{Ld}^{\prime} \cdot \mathrm{Ct} \cdot \mathrm{~A} \\
& \mathrm{C}^{+}=\mathrm{D}_{\mathrm{C}}=\left(\mathrm{Ld} \cdot \mathrm{C}+\mathrm{Ld} \cdot \mathrm{D}_{\text {Cin }}\right) \oplus \mathrm{Ld}^{\prime} \cdot \mathrm{Ct} \cdot \mathrm{~B} \cdot \mathrm{~A}
\end{aligned}
$$

Counters for Other Sequences

State graph

State table

C	B	A	C^{+}	B^{+}	A^{+}
0	0	0	1	0	0
0	0	1	-	-	-
0	1	0	0	1	1
0	1	1	0	0	0
1	0	0	1	1	1
1	0	1	-	-	-
1	1	0	-	-	-
1	1	1	0	1	0

Counters for Other Sequences
 Counter Design Using T Flip-Flops

State table		T FF input		
C B A	$C^{+} \mathrm{B}^{+} \mathrm{A}^{+}$	$\mathrm{T}_{\mathrm{C}} \mathrm{T}_{\mathrm{B}} \mathrm{T}_{\mathrm{A}}$		
000	100	100	QQ^{+}	T
001	- - -	- - -	00	0
010	$\begin{array}{lll}0 & 1\end{array}$	001	01	1
$0 \begin{array}{lll}0 & 1 & 1\end{array}$	000	0111	10	1
100	111	011	11	0
101	- - -	- - -		
110	- - -	- - -	=	
$1 \begin{array}{lll}1 & 1\end{array}$	010	101		

Counters for Other Sequences Counter Design Using T Flip-Flops

Counters for Other Sequences
 Counter Design Using T Flip-Flops

-For T flip-flop implementation
■ If the Q^{+}map has a don't care in some square, the T_{Q} map will have a don't care in the corresponding square
Divide the Q^{+}map into two halves corresponding to $\mathrm{Q}=0$ and $\mathrm{Q}=1$, and transform each half of the map $\square W h e n e v e r \mathrm{Q}=0, \mathrm{~T}=\mathrm{Q}^{+}$

- Copy the half for which $\mathrm{Q}=0$
$\square W h e n e v e r \mathrm{Q}=1, \mathrm{~T}=\left(\mathrm{Q}^{+}\right)^{\prime}$
- Complement the half for which $\mathrm{Q}=1$

Counters for Other Sequences Counter Design Using T Flip-Flops

\square T flip-flop realization

Counters for Other Sequences Counter Design Using T Flip-Flops

\square Timing diagram

- Negative-edge triggered

Counters for Other Sequences Counter Design Using T Flip-Flops

\square In the process of completing the circuit design, the transitions of the original don't care sates will be specified

- Don't care states need to be checked to make sure they eventually lead into the main counting sequence unless a power-up reset is provided
\square When the power in a circuit is first turned on, the initial states of the flip-flops may be unpredictable (can be in an arbitrary state)

What are the transitions for states 001, 101, 110 by the realization in Slide 33?

$$
\begin{aligned}
& T_{C}=C^{\prime} B^{\prime}+C B \\
& T_{B}=C^{\prime} A+C B^{\prime} \\
& T_{A}=C+B
\end{aligned}
$$

Counters for Other Sequences Counter Design Using T Flip-Flops

\square Example (cont'd)
If FFs are powered up at $(C B A)=001$, then $T_{C}=T_{B}=1$ and $T_{A}=0$ leads to next state 111

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{C}}=\mathrm{C}^{\prime} \mathrm{B}^{\prime}+C B \\
& \mathrm{~T}_{\mathrm{B}}=\mathrm{C}^{\prime} \mathrm{A}+\mathrm{CB} \\
& \mathrm{~T}_{\mathrm{A}}=\mathrm{C}+\mathrm{B}
\end{aligned}
$$

Counters for Other Sequences
 Counter Design Using T Flip-Flops

\square Example
Without power-up reset, the following Johnson counter may be incorrect when powered up at states 010 and 101

Flip-flop connections

State graph

Counters for Other Sequences Counter Design Using D Flip-Flops

State table D FF input

State graph

Counters for Other Sequences
 Counter Design Using D Flip-Flops

$\mathrm{D}_{\mathrm{C}}=\mathrm{C}^{+}=\mathrm{B}^{\prime}$
$D_{B}=B^{+}=C+B A^{\prime}$
$D_{A}=A^{+}=C A^{\prime}+B A^{\prime}=A^{\prime}(C+B)$

Counter Design Using S-R and J-K FFs Counter Design Using S-R Flip-Flops

םS-R flip-flop inputs

$S \mathrm{R} Q$	Q^{+}
000	0
0001	1
010	0
$\begin{array}{llll}0 & 1 & 1\end{array}$	0
100	1
$\begin{array}{lll}1 & 0 & 1\end{array}$	1
$1 \begin{array}{lll}1 & 1 & 0\end{array}$	
$1 \begin{array}{lll}1 & 1\end{array}$	

Counter Design Using S-R and J-K FFs Counter Design Using S-R Flip-Flops

State graph

				C		B		A	
C	B A	C^{+}	$\mathrm{B}^{+} \mathrm{A}^{+}$	S_{C}	R_{C}	S_{B}	R_{B}	$\mathrm{S}_{\text {A }}$	R_{A}
0	00	1	00	1	0	0	X	0	X
0	01	-	-	X	X	X	X	X	X
0	10	0	11	0	X	X	0	1	0
0	11	0	00	0	X	0	1	0	1
1	00	1	11	X	0	1	0	1	0
1	01	-	- -	X	X	X	X	X	X
1	10	-	- -	X	X	X	X	X	X
1	11	0	10	0	1	X	0	0	1

Q	Q^{+}	S	R
0	0	0	X
0	1	1	0
1	0	0	1
1	1	X	0

Counter Design Using S-R and J-K FFs Counter Design Using S-R Flip-Flops

Next-state maps

${ }^{C} 0$		1
BA		
00	1	1
01	X	X
11	0	0
10	0	X

+

S_{A}
R_{A}
$R_{A}=A$
$S_{A}=C^{\prime}+A^{\prime}$
$=A^{\prime}(C+B)$
$R_{B}=C^{\prime} A$
S_{B}

Counter Design Using S-R and J-K FFs Counter Design Using S-R Flip-Flops

$\square S$-R flip-flop realization

(feedback lines omitted)

Counter Design Using S-R and J-K FFs Counter Design Using J-K Flip-Flops

ㅁ.K flip-flop inputs

Counter Design Using S-R and J-K FFs Counter Design Using J-K Flip-Flops

State graph

			$\overbrace{}^{\text {C }}$					A	
C	B A	C^{+}	$\mathrm{B}^{+} \mathrm{A}^{+}$	J_{C}	K_{c}	J_{B}	K_{B}	J_{A}	K_{A}
0	00	1	00	1	X	0	X	0	X
0	01	-	-	X	X	X	X	X	X
0	10	0	11	0	X	X	0	1	X
0	11	0	00	0	X	X	1	X	1
1	00	1	11	X	0	1	X	1	X
1	01	-	- -	X	X	X	X	X	X
1	10	-	-	X	X	X	X	X	X
1	11	0	10	X	1	X	0	X	1

Q	Q^{+}	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

Counter Design Using S-R and J-K FFs Counter Design Using J-K Flip-Flops

Next-state maps

Counter Design Using S-R and J-K FFs Counter Design Using J-K Flip-Flops

ㄱJ-K flip-flop realization

(feedback lines omitted)

Derivation of Flip-Flop Input Equations

\square Determination of flip-flop input equations from next-state equations using Karnaugh maps

Type of Flip-Flop	Input	$\mathrm{Q}=0$		$\mathrm{Q}=1$		Rules for Forming Input Map From Next-State Map*	
		$\mathrm{Q}^{+}=0$	$\mathrm{Q}^{+}=1$	$\mathrm{Q}^{+}=0$	$\mathrm{Q}^{+}=1$	$\begin{gathered} \mathrm{Q}=0 \text { Half of } \\ \text { Map } \end{gathered}$	$\begin{gathered} \mathrm{Q}=1 \text { Half of } \\ \text { Map } \end{gathered}$
Delay	D	0	1	0	1	No change	No change
Trigger	T	0	1	1	0	No change	Complement
Set-Reset	S	0	1	0	X	No change	Replace 1's with X's**
	R	X	0	1	0	Replace 0's with X's**	Complement
J-K	J	0	1	X	X	No change	Fill in with X 's
	K	X	X	1	0	Fill in with X's	Complement

[^0]** Fill in the remaining squares with 0 's

Derivation of Flip-Flop Input Equations Flip-Flop Input Tables

Q	Q^{+}	D
0	0	0
0	1	1
1	0	0
1	1	1

Q	Q^{+}	T
0	0	0
0	1	1
1	0	1
1	1	0

Q	Q^{+}	S	R
0	0	0	X
0	1	1	0
1	0	0	1
1	1	X	0

Q	Q^{+}	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

Realization using J-K flip flops usually yields lower cost implementation

Derivation of Flip-Flop Input Equations Example

Next-state map

$D=Q^{\prime} A^{\prime} B+Q B^{\prime}+A B^{\prime}$
D input map

$T=A^{\prime} B+A B^{\prime}+Q B$
T input map

Derivation of Flip-Flop Input Equations Example (1/3)

\square Derivation of Q_{1} (T flip-flop) input equation using 4 -variable maps

		01	11	10	$B C Q^{2}$		01	11	10
00	0	1	0	1	00	0	1	1	0
01	x	1	1	0	01	X	1	0	1
11	1	X	X	1	11	1	X	X	0
10	0	0	0	X	10	0	0	1	X
$\begin{gathered} \mathrm{Q}_{1}=0 \\ \text { half } \end{gathered}$						T			

Derivation of Flip-Flop Input Equations Example (2/3)

\square Derivation of Q_{2} (S-R flip-flop) input equations using 4 -variable maps

$\mathrm{CQ}_{2}{ }^{\mathrm{AB}}$					$\mathrm{CQ}_{2}{ }^{\mathrm{AB}}$			11	10	$\mathrm{CQ}_{2}{ }^{\mathrm{AB}}$		01	11	10
-half $\longrightarrow 00$	1	X	1	0	00	0	X	0	X	00	1	X	1	0
$\mathrm{Q}_{2}=1 \quad 01$	0	0	X	1	01	1	1	X	0	01	0	0	X	X
half 11	1	0	x	1	11	0	1	X	0	11	X	0	X	X
$\rightarrow 10$	X	0	0	1	10	X	X	X	0	10	X	0	0	1
$\mathrm{Q}_{2}{ }^{+}$					R_{2}					S_{2}				

Derivation of Flip-Flop Input Equations Example (3/3)

\square Derivation of Q_{3} (J-K flip-flop) input equations using 4 -variable maps

$\mathrm{Q}_{3} C^{A E}$									10		00	01	11	10
$\bigcirc 0$	0	0	1	X	00	0	0	1	X	0	X	X	X	X
01	0	1	X	1	01	0	1	X	1	1	X	X	X	X
¢11	X	x	0	0	11	X	x	X	X	11	x	X	1	1
10	1	1	1	0	10	X	X	X	X	10	0	0	0	1
	$\mathrm{Q}_{3}{ }^{+}$					$J_{3}=A+B C$					${ }_{3}$			

Derivation of Flip-Flop Input Equations Summary

-To implement a counter of N states, we need at least $\log _{2} \mathrm{~N}$ flip-flops
-Derive input equations depending on the target implementation using D, T, SR, or JK flip-flops
\square Pay attention to don't care states for power-up conditions. Sometimes reset may be needed

[^0]: *Always copy X 's from the next-state map onto the input maps first

