Switching Circuits \＆ Logic Design

Jie－Hong Roland Jiang
江介宏
Department of Electrical Engineering National Taiwan University

Fall 2014

§15 Reduction of State Tables，State Assignment

Outline

-Elimination of redundant states
-Equivalent states

Not in exam:
-Determination of state equivalence using an implication table
-Equivalent sequential circuits
-State assignment

Elimination of Redundant States

-Example (§14.3)
Block diagram

Clock
$Z=1 \Leftrightarrow$ input sequence 0101 or 1001 occurs

The circuit examines groups of 4 consecutive inputs, and resets after every 4 inputs

I nput/ output sequence example

$X=0101$	0010	1001	0100
$Z=0001$	0000	0001	0000

Elimination of Redundant States

Mealy machine implementation (recap)
(1) Partial graph

(2) Complete state graph

$\mathrm{S}_{1} \quad 0$
$\mathrm{S}_{2} 1$
$\mathrm{S}_{3} \quad 01$ or 10

S_{4}	010 or 100

Elimination of Redundant States

\square State table for $\{0101,1001\}$ sequence detector
Consider all possible input sequences of length four

Elimination of Redundant States

Input Sequence	Present State	Next State		Present Output	
		$\mathrm{X}=0$	$\mathrm{X}=1$	$\mathrm{X}=0$	$\mathrm{X}=1$
reset	A	B	C	0	0
0	B	D	E	0	0
1	C	F	G	0	0
00	D	H	$\times \mathrm{H}$	0	0
01	E	J	K H	0	0
10	F	$\pm J$	M H	0	0
11	G	NH	RH	0	0
000	(H)	A	A	0	0
-001		A	A	0	0
010	(1)	A	A	0	1
-011	,		A	0	0
100	L		A	0	1
101	M	A	A	0	0
-110	N	A	A	0	0
111	P	A	A	0	0

- If two states have the same next state and the same output under every possible input, then they are equivalent states (the converse is not true!)
■ \{H,I,K,M,N,P\} and \{J,L\} are equivalent state sets
For every equivalent state set, we can take any of its states as the representative and replace the other states with this representative
- E.g., take H for $\{\mathrm{H}, \mathrm{I}, \mathrm{K}, \mathrm{M}, \mathrm{N}, \mathrm{P}\}$ and take J for $\{J, L\}$

Elimination of Redundant States

Input Sequence	Present State	Next State		Present Output	
		X=0	X=1	$\mathrm{X}=0$	$\mathrm{X}=1$
reset	A	B	C	0	0
0	B	D	E	0	0
1	C	KE	GD	0	0
00	D	H	XH	0	0
01	(E)	J	KH	0	0
10	F		MH		0
11	G	N 1	\cdots	0	0
000	(H)	A	A	0	0
-001			A	0	0
010	(1)	A	A	0	
-011	K	A	A	0	0
100	L	A	A		1
101	M	A	A	0	0
$\underline{110}$	N	A	A	0	0
$\underline{111}$	p	A	A	0	0

\square After substituting H for I,K,M,N,P, and substituting J for L, we see that $\{\mathrm{D}, \mathrm{G}\}$ and $\{\mathrm{E}, \mathrm{F}\}$ are again equivalent state sets

- I.e., having the same next state and the same output under every possible inputTaking D as the representative for equivalent state $\operatorname{set}\{\mathrm{D}, \mathrm{G}\}$ and E for $\{E, F\}$, we can eliminate rows of G and F

Elimination of Redundant States

Input Sequence	Present State	Next State		Present Output	
		X=0	X=1	$\mathrm{X}=0$	X=1
reset	A	B	C	0	0
0	B	D	E	0	0
1	C	KE	$G D$	0	0
00	(D)	H	XH	0	0
01	(E)	J	K H	0	0
10	+	*	M H		0
11	\checkmark	N ${ }^{\text {N }}$	\cdots	0	0
000	(H)	A	A	0	0
-001		A	A	0	0
010	(1)	A	A	0	
-011	K	A	A	0	0
100	L	A	A	0	1
101	M	A	A	0	0
1110	N	A	A	0	0
1111	P	A	A	0	0

\square At the end of the above procedure, known as row matching, we have 7
states A,B,C,D,E,H,J left

- These 7 states may or may not be equivalent - Their equivalences need to be further determined by the method of $\$ 15.2$ and \$15.3
- In this example, the 7 states happen to be inequivalent
Row matching is not sufficient to find all equivalent states (why?)
- It works however in the special case where the circuit resets to the starting state after receiving a fixed number of inputs (why?)

Elimination of Redundant States

\square Reduced state table and state graph

Present State	Next State		Output	
X=0	X=1	X=0	X=1	
A	B	C	0	0
B	D	E	0	0
C	E	D	0	0
D	H	H	0	0
E	J	H	0	0
H	A	A	0	0
J	A	A	0	1

Equivalent States

\square Two states are equivalent if there is no way of telling them apart through observation of the circuit inputs and outputs
\square Consider two sequential circuits N_{1} and N_{2} (they may be different circuits or two copies of the same circuit), one starting in state p and one in state q

- If the output sequences \underline{Z}_{1} and \underline{Z}_{2} are the same (different) for every (some) input sequence \underline{X}, then states p and q are equivalent (inequivalent)
\square we write $\underline{Z}_{1}=\lambda_{1}(\mathrm{p}, \underline{\mathrm{X}})$ and $\underline{Z}_{2}=\lambda_{2}(\mathrm{q}, \underline{\mathrm{X}})$ (because the output sequence is a function of the initial state and the input sequence)

Equivalent States

\square Definition 15.1
Let N_{1} and N_{2} be sequential circuits (not necessarily different). Let X represent a sequence of inputs of arbitrary length. Then state p in N_{1} is equivalent to state q , denoted $\mathrm{p} \equiv \mathrm{q}$, in N_{2} iff $\lambda_{1}(\mathrm{p}, \underline{X})=$ $\lambda_{2}(q, \underline{X})$ for every possible input sequence \underline{X}.

- Symbol " $\equiv "$ here is different from XNOR
\square Theorem 15.1 (proof in Appendix D)
Two states p and q of a sequential circuit are equivalent iff for every single input X, the outputs are the same and the next states are equivalent, i.e.,

$$
\lambda(p, X)=\lambda(q, X) \text { and } \delta(p, X) \equiv \delta(q, X)
$$

where $\lambda(p, X)$ and $\delta(p, X)$ are the output and the next state, respectively, given the present state p and input X.

- Note that the next states don't need to be the same (=) (used in row matching), but just equivalent (\equiv)
\square E.g., $D \equiv G$ in the table of Slide 6, but their next states (H and N for $X=0$, and I and P for $X=1$) are not equal
\square Row matching is a special case of Theorem 15.1

Equivalent States

\square Example (Table 13.4)
Show no equivalent states

	Next State					Present Output $\left(\mathrm{Z}_{1} \mathrm{Z}_{2}\right)$			
State	$\mathrm{X}_{1} \mathrm{X}_{2}=00$	01	10	11	$\mathrm{X}_{1} \mathrm{X}_{2}=00$	01	10	11	
$\mathrm{~S}_{0}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{0}$	00	10	11	01	
$\mathrm{~S}_{1}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	10	10	11	11	
$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{1}$	00	10	11	01	
$\mathrm{~S}_{3}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{0}$	00	00	01	01	

\square From the outputs, we know only S_{0} and S_{2} can possibly be equivalent. Moreover,

$$
\mathrm{S}_{0} \equiv \mathrm{~S}_{2} \text { iff } \mathrm{S}_{3} \equiv \mathrm{~S}_{3}, \mathrm{~S}_{2} \equiv \mathrm{~S}_{0}, \mathrm{~S}_{1} \equiv \mathrm{~S}_{1} \text {, and } \mathrm{S}_{0} \equiv \mathrm{~S}_{1}
$$

But $\mathrm{S}_{0} \neq \mathrm{S}_{1}$ (because the outputs differ), so $\mathrm{S}_{0} \neq \mathrm{S}_{2}$

Determination of State Equivalence (Not in Exam)

\square Use an implication table (a pair chart) to check each pair of states for possible equivalence

- Non-equivalent pairs are systematically eliminated until only the equivalent pairs remain
- This chart has a square for every possible states; a square in column i and row j corresponds to state pair $i-j$

Present State	Next State		Present Output
	$\mathrm{X}=0$	1	
a	d	c	0
b	f	h	0
c	e	d	1
d	a	e	0
e	c	a	1
f	f	b	1
g	b	h	0
h	c	g	1

Determination of State Equivalence

\square Example				bcd	$\begin{aligned} & \hline \text { d-f } \\ & c-h \end{aligned}$	$\longleftarrow a \equiv b$ iff $d \equiv f$ and $c \equiv h$					
Present State	Next State		Present Output		X	X	\qquad	$b \neq c \text { si }$	ince o	utputs differ	
			$\bar{a}-\alpha$ c-e		$\begin{aligned} & \text { a-f } \\ & \text { e-h } \end{aligned}$	X					
	$\mathrm{X}=0$	1		e		x	ree	X			
a	d	n		0	e			$a-d$			
c	e	h	0 1	f			e-f	X	c-f		
c		${ }_{\text {d }}{ }^{\text {d }}$	1	f		Δ	b-d	x	$a-b$		
e	a	e	1	9	$\begin{aligned} & \text { b-d } \\ & c-h \end{aligned}$	b-f	X	$\begin{aligned} & \text { a-b } \\ & e-b \end{aligned}$			
¢		b		h			c-e		a-g	c-f	
h	c	g	1				d-g	,	a-g	b-g	

Determination of State Equivalence

Example (cont'd)

Determination of State Equivalence

\square Example (cont'd)

Equivalent Sequential Circuits (Not in Exam)

\square Definition 15.2
Sequential circuit N_{1} is equivalent to circuit N_{2} if for each state p in N_{1}, there is a state q in N_{2} such that $p \equiv q$, and conversely, for each state s in N_{2}, there is a state t in N_{1} such that $s \equiv t$

- If both N_{1} and N_{2} have a minimum number of states (i.e., state minimized) and $\mathrm{N}_{1} \equiv \mathrm{~N}_{2}$, then N_{1} and N_{2} must have the same number of states

Equivalent Sequential Circuits

\square Example

		N_{1}		
	$\mathrm{X}=0$	1	$\mathrm{X}=0$	1
A	B	A	0	0
B	C	D	0	1
C	A	C	0	1
D	C	B	0	0

		N_{2}		
	$\mathrm{X}=0$	1	$\mathrm{X}=0$	1
$\mathrm{~S}_{0}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{1}$	0	1
$\mathrm{~S}_{1}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{0}$	0	0
$\mathrm{~S}_{2}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{2}$	0	0
$\mathrm{~S}_{3}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	0	1

Equivalent Sequential Circuits

Example (cont'd)

State Assignment (Not in Exam)

\square After the number of states in a state table has been reduced, the flip-flop input equations can be derived as follows

1. Perform state assignment (assign flip-flop state values to correspond to the states in the reduced table)

- The cost of the logic required to realize a sequential circuit is strongly dependent on the way this state assignment is made (subject of $\$ 15.7 \sim \$ 15.9$)

2. Construct a transition table which gives the next states of the flip-flops as a function of the present states and inputs
3. Derive the next-state maps from the transition table
4. Find flip-flop maps from the next-state maps using the techniques of $\$ 12$ and find the flip-flop input equations from the maps
