Logic Synthesis \& Verification, Fall 2014
 National Taiwan University

Problem Set 2

Due on $2014 / 11 / 05$ before lecture

1 [Cofactor and QBF]

(a) (6%) Given two arbitrary Boolean functions f and g and a Boolean variable v, prove that $(\neg f)_{v}=\neg\left(f_{v}\right)$ and $(f\langle o p\rangle g)_{v}=\left(f_{v}\right)\langle o p\rangle\left(g_{v}\right)$ for $\langle o p\rangle=\{\oplus\}$.
(b) (16%) Prove the following implications or disprove by showing counterexamples. Consider " \rightarrow " and " \leftarrow " of " \leftrightarrow " separately when it is needed.

$$
\begin{array}{r}
\forall x, \exists y \cdot f(x, y, z) \leftrightarrow \exists y, \forall x \cdot f(x, y, z) \\
\neg \forall x, \exists y \cdot f(x, y, z) \leftrightarrow \exists x \cdot(\neg \exists y \cdot f(x, y, z)) \\
\exists x \cdot(f(x, y) \wedge g(x, y)) \leftrightarrow(\exists x \cdot f(x, y)) \wedge(\exists x \cdot g(x, y)) \\
\exists x \cdot(f(x, y) \vee g(x, y)) \leftrightarrow(\exists x \cdot f(x, y)) \vee(\exists x \cdot g(x, y))
\end{array}
$$

(c) (8%) For an arbitrary $\mathrm{QBF} \exists z \cdot f(x, y, z)$, find a function $g(x, y)$ such that $\exists z . f(x, y, z)=f(x, y, g(x, y))$. Express the onset, offset, and don't-care set of g in terms of function f.

2 [BDD Procedures]

(a) (8%) Give a procedure $\operatorname{COFACTOR}(F, l)$ that takes an ROBDD F and a literal l (e.g., $l=x$ or $l=\neg x$) as input and produces the cofactored ROBDD $\left.F\right|_{l}$ as output.
(b) (4\%) Express BDD COMPOSE (F, v, G), which substitutes variable v in function F with function G, in terms of BDD ITE and COFACTOR.

3 [BDD Operations]

Let $f=\neg a b \neg c \vee a \neg c d \vee a c \neg d$ and $g=c \oplus d \oplus e$.
(a) (8\%) Draw the (shared) ROBDDs of f and g under variable ordering $a<$ $b<c<d<e$ (with a on top).
(b) (8%) Reduce the above ROBDDs with complemented edges.
(c) (8%) Compute the ROBDD (with no complemented edges) of $\operatorname{ITE}(f, 0, g)$.

4 [SAT Solving]

(20\%) Consider SAT solving the CNF formula consisting of the following 10 clauses

$$
\begin{array}{r}
C_{1}=(a+b+c), C_{2}=\left(a+b+c^{\prime}+d^{\prime}\right), C_{3}=\left(a+b^{\prime}+c\right), \\
C_{4}=\left(a+b^{\prime}+c^{\prime}\right), C_{5}=\left(a+c^{\prime}+d\right), C_{6}=\left(a^{\prime}+b+c\right), \\
C_{7}=\left(a^{\prime}+b^{\prime}+d\right), C_{8}=\left(a^{\prime}+b^{\prime}+c^{\prime}+d^{\prime}\right), C_{9}=(b+d), C_{10}=\left(b^{\prime}+c+d^{\prime}\right)
\end{array}
$$

(a) (10%) Apply implication and conflict-based learning in solving the above CNF formula. Assume the decision order follows a, b, c, and then d; assume each variable is assigned 0 first and then 1 . Whenever a conflict occurs, draw the implication graph and enumerate all possible learned clauses under the Unique Implication Point (UIP) principle. (In your implication graphs, annotate each vertex with "variable = value@decision_level", e.g., " $b=$ $0 @ 2$ ", and annotate each edge with the clause that implication happens.) If there are multiple UIP learned clauses for a conflict, use the one with the UIP closest to the conflict in the implication graph.
(b) (10%) The resolution between two clauses $C_{i}=\left(C_{i}^{*}+x\right)$ and $C_{j}=\left(C_{j}^{*}+x^{\prime}\right)$ (where C_{i}^{*} and C_{j}^{*} are sub-clauses of C_{i} and C_{j}, respectively) is the process of generating their resolvent $\left(C_{1}^{*}+C_{j}^{*}\right)$. The resolution is often denoted as

$$
\frac{\left(C_{i}^{*}+x\right)\left(C_{j}^{*}+x^{\prime}\right)}{\left(C_{1}^{*}+C_{j}^{*}\right)}
$$

A fact is that a learned clause in SAT solving can be derived by a few resolution steps. Show how that the learned clauses of (a) can be obtained by resolution with respect to their implication graphs.

5 [SAT Solving]

(14\%) Show that a CNF formula ϕ is unsatisfiable if and only if an empty clause can be obtained through resolution.

