Logic Synthesis & Verification, Fall 2014

National Taiwan University

Problem Set 2

Due on 2014/11/05 before lecture

1 [Cofactor and QBF]

- (a) (6%) Given two arbitrary Boolean functions f and g and a Boolean variable v, prove that $(\neg f)_v = \neg (f_v)$ and $(f \langle op \rangle g)_v = (f_v) \langle op \rangle (g_v)$ for $\langle op \rangle = \{\oplus\}$.
- (b) (16%) Prove the following implications or disprove by showing counterexamples. Consider " \rightarrow " and " \leftarrow " of " \leftrightarrow " separately when it is needed.

$$\forall x, \exists y. f(x, y, z) \leftrightarrow \exists y, \forall x. f(x, y, z)$$
$$\neg \forall x, \exists y. f(x, y, z) \leftrightarrow \exists x. (\neg \exists y. f(x, y, z))$$
$$\exists x. (f(x, y) \land g(x, y)) \leftrightarrow (\exists x. f(x, y)) \land (\exists x. g(x, y))$$
$$\exists x. (f(x, y) \lor g(x, y)) \leftrightarrow (\exists x. f(x, y)) \lor (\exists x. g(x, y))$$

(c) (8%) For an arbitrary QBF $\exists z. f(x, y, z)$, find a function g(x, y) such that $\exists z. f(x, y, z) = f(x, y, g(x, y))$. Express the onset, offset, and don't-care set of g in terms of function f.

2 [BDD Procedures]

- (a) (8%) Give a procedure COFACTOR(F,l) that takes an ROBDD F and a literal l (e.g., l=x or $l=\neg x$) as input and produces the cofactored ROBDD $F|_l$ as output.
- (b) (4%) Express BDD COMPOSE(F, v, G), which substitutes variable v in function F with function G, in terms of BDD ITE and COFACTOR.

3 [BDD Operations]

Let $f = \neg ab \neg c \lor a \neg cd \lor ac \neg d$ and $g = c \oplus d \oplus e$.

- (a) (8%) Draw the (shared) ROBDDs of f and g under variable ordering a < b < c < d < e (with a on top).
- (b) (8%) Reduce the above ROBDDs with complemented edges.
- (c) (8%) Compute the ROBDD (with no complemented edges) of ITE(f, 0, g).

4 [SAT Solving]

(20%) Consider SAT solving the CNF formula consisting of the following 10 clauses

$$C_1 = (a+b+c), C_2 = (a+b+c'+d'), C_3 = (a+b'+c),$$

$$C_4 = (a+b'+c'), C_5 = (a+c'+d), C_6 = (a'+b+c),$$

$$C_7 = (a'+b'+d), C_8 = (a'+b'+c'+d'), C_9 = (b+d), C_{10} = (b'+c+d').$$

- (a) (10%) Apply implication and conflict-based learning in solving the above CNF formula. Assume the decision order follows a, b, c, and then d; assume each variable is assigned 0 first and then 1. Whenever a conflict occurs, draw the implication graph and enumerate all possible learned clauses under the Unique Implication Point (UIP) principle. (In your implication graphs, annotate each vertex with "variable = value@decision_level", e.g., "b = 0@2", and annotate each edge with the clause that implication happens.) If there are multiple UIP learned clauses for a conflict, use the one with the UIP closest to the conflict in the implication graph.
- (b) (10%) The **resolution** between two clauses $C_i = (C_i^* + x)$ and $C_j = (C_j^* + x')$ (where C_i^* and C_j^* are sub-clauses of C_i and C_j , respectively) is the process of generating their **resolvent** $(C_1^* + C_j^*)$. The resolution is often denoted as

$$\frac{(C_i^* + x) \qquad (C_j^* + x')}{(C_1^* + C_i^*)}$$

A fact is that a learned clause in SAT solving can be derived by a few resolution steps. Show how that the learned clauses of (a) can be obtained by resolution with respect to their implication graphs.

5 [SAT Solving]

(14%) Show that a CNF formula ϕ is unsatisfiable if and only if an empty clause can be obtained through resolution.