Logic Synthesis \& Verification, Fall 2014
 National Taiwan University

Problem Set 3

Due on 2014/11/14 by 17:30
(Please hand in your assignment in the instructor's mailbox in EE2.)

1 [Symmetric Functions]

(20\%) Two types of variable symmetries of a Boolean function are defined as follows.

S1: $f(\ldots, x, y, \ldots)=f(\ldots, y, x, \ldots)$
S2: $f(\ldots, x, y, \ldots)=\neg f(\ldots, y, x, \ldots)$
For a Boolean function $f\left(x_{1}, \ldots, x_{n}\right)$, do S_{1} and S_{2} form equivalence relations over the variables $X=\left\{x_{1}, \ldots, x_{n}\right\}$? Note that an equivalence relation R must be reflexive, i.e., $(a, a) \in R$ for all $a \in X$, symmetry, i.e., $(a, b) \in R \rightarrow(b, a) \in R$, and transitive, i.e., $(a, b) \in R$ and $(b, c) \in R \rightarrow(a, c) \in R$.

2 [Unate Functions]

(10\%) Show that every prime implicant of a unate function is an essential prime implicant.

3 [Generalized Cofactor]

(20\%) Prove or disprove the following equalities.
(a) $(5 \%) ~ \neg f=g \cdot \operatorname{co}(\neg f, g)+\neg g \cdot \neg \operatorname{co}(\neg f, \neg g)$
(b) $(5 \%) \operatorname{co}(c o(f, g), h)=\operatorname{co}(f, g \cdot h)$
(c) $(5 \%) c o(f \cdot g, h)=c o(f, h) \cdot c o(g, h)$
(d) $(5 \%) c o(\neg f, g)=\neg c o(f, g)$

4 [Unate Recursive Paradigm: Complementation]

(20\%) Complement the function

$$
f=a^{\prime} b^{\prime} c+a^{\prime} c d+a b^{\prime} d^{\prime}+b c+b c^{\prime} d+b^{\prime} c d^{\prime}
$$

using the unate recursive paradigm.

5 [Minimum Column Covering]

(10%) Given a $m \times n$ Boolean matrix, how would you use a (CNF-based) SAT solver to solve the MINIMUM column covering problem? Specifically, how would you encode the problem into CNF formulas and apply the solver to solve them? Please have a procedure that queries the solver at most $O(\log n)$ times.

6 [Quine-McCluskey]

(20\%) Given an incompletely specified function over variables a, b, c, d, e, f with onset minterms

$$
\begin{aligned}
& \{000001,000010,000011,000101,000111,001011,001101, \\
& 001111,100001,100011,101011,101111,111011,111100,\}
\end{aligned}
$$

and don't care set minterms
$\{000000,000110,011111,110011,110110,111010,111111\}$,
apply the Quine-McCluskey procedure to minimize it. Identify all essential prime implicants and find all minimum sum-of-products expressions. Show intermediate results of your derivation.

