
1

Logic Synthesis and
Verification

Jie-Hong Roland Jiang
江介宏

Department of Electrical Engineering
National Taiwan University

Fall 2014

2

Course Info
Instructor

Jie-Hong Roland Jiang
email: jhjiang@ntu.edu.tw
office: 242, EEII
phone: (02)3366-3685
office hour: 16:00-18:00 Thu

Course webpage
http://cc.ee.ntu.edu.tw/~jhjiang/instruction/courses/fall14-
lsv/lsv.html

Email contact
Your official NTU email addresses will be used for future contact

3

Grading Policy
Grading rules

 Homework 30%
 Programming assignments 10%
 Midterm exam 25%
 Final quiz 5%
 Project 30%

 Presentation + report

Homework
 discussions encouraged, but write down solutions individually and separately
 due one week from the problem set is out except for programming assignments

(due date will be specified)
 20% off per day for late homework
 6 homework assignments (peer-review grading)

Midterm
 in-class exam (schedule may/may not differ from the academic calendar)

Project
 oral presentation, final report

Report grading errors within one week after receiving notice.
Plagiarism and cheating are strictly prohibited (no credits for plagiarism).

4

References
 J.-H. R. Jiang and S. Devadas. Logic Synthesis in a Nutshell.

(Chapter 6 of Electronic Design Automation: Synthesis,
Verification, and Test), Elsevier 2009.
 Downloadable handout

 F. M. Brown. Boolean Reasoning: The Logic of Boolean Equations.
Dover, 2003.
 Used in the introduction to Boolean algebra

 S. Hassoun and T. Sasao. Logic Synthesis and Verification.
Springer, 2001.

 G. D. Hachtel and F. Somenzi. Logic Synthesis and Verification
Algorithms. Springer, 2006.

 W. Kunz and D. Stoffel. Reasoning in Boolean Networks: Logic
Synthesis and Verification Using Testing Techniques. Springer,
1997.

5

References (cont’d)
 Papers on course webpage

 Conference Proceedings
 ACM/IEEE Design Automation Conference (DAC)
 IEEE/ACM Int’l Conf. Computer-Aided Design (ICCAD)
 DATE, ASP-DAC
 Computer-Aided Verification (CAV)
 TACAS, FMCAD

 Journals
 IEEE Trans. on Computer-Aided Design
 IEEE Trans. on Computers

6

Introduction

Reading:
Logic Synthesis in a Nutshell

Section 1

7

Evolving Information Technology
 The Industrial Revolution

 Application of power-driven machinery to manufacturing
(1750 – 1830)

 IT Revolution
 Application of electronic devices to information

processing
(1950 – present)

 Electronic systems evolve in a fascinating speed
 Design challenges emerge and design paradigms shift in

this evolution
 EDA tools change along the evolution

IC Design Flow

HDL spec.

logic
synthesislogic netlist

circuit
netlist

layout /
mask

chip

RTL
synthesis

physical
design

fab.

9

Electronic Design Automation
 EDA tools aim at automating electronic system design and

optimizing general design instances (not just some specific
design)

 EDA is a field with rich applications from electrical
engineering, computer science, and mathematics
 Electronics, circuit theory, communication, DSP, device

physics, …
 Algorithms, complexity theory, automata theory, logics,

games, …
 Probability, statistics, algebra, numerical analysis, matrix

computation, …

 EDA is one of the most advanced areas in practical
computer science
 Many problems require sophisticated mathematical modeling
 Many algorithms are computationally hard, and require

advanced heuristics to work on realistic problem sizes

 EDA is a very good workplace for software engineers
 E.g., modern SAT solvers (GRASP, Chaff, BerkMin, MiniSAT) are

developed in the field of EDA

10

VLSI Design Flow & Abstraction Levels

System Level

Register Transfer Level

Gate Level

Transistor Level

Layout Level

Mask Level

Verification

Design

11

System Level
 Abstract algorithmic description of high-level behavior

 E.g., C-programming language

 abstract because it does not contain any implementation
details for timing or data

 efficient to get a compact execution model as first design draft
 difficult to maintain throughout project because no link to

implementation

Port*
compute_optimal_route_for_packet(Packet_t *packet,

Channel_t *channel)
{
static Queue_t *packet_queue;

packet_queue = add_packet(packet_queue, packet);
...

}

by courtesy of A. Kuehlmann 12

Register Transfer Level
 Cycle accurate model “close” to the hardware

implementation
 bit-vector data types and operations as abstraction from bit-

level implementation
 sequential constructs (e.g. if - then - else, while loops) to

support modeling of complex control flow
module mark1;
reg [31:0] m[0:8192];
reg [12:0] pc;
reg [31:0] acc;
reg[15:0] ir;
always

begin
ir = m[pc];
if(ir[15:13] == 3b’000)

pc = m[ir[12:0]];
else if (ir[15:13] == 3’b010)

acc = -m[ir[12:0]];
...

end
endmodule by courtesy of A. Kuehlmann

13

Gate Level
 Model on finite-state machine level

 Functions represented in Boolean logic using registers and
gates

 Various delay models for gates and wires
1ns

4ns3ns

5ns

by courtesy of A. Kuehlmann 14

Transistor Level
Model on CMOS transistor level

 Binary switches used for function modeling
E.g., in functional equivalence checking

 Differential equations used for circuit simulation
E.g., in timing/waveform analysis

by courtesy of A. Kuehlmann

15

Layout Level
 Transistors and wires are laid out as polygons in different

technology layers such as diffusion, poly-silicon, metal, etc.

by courtesy of A. Kuehlmann 16

Integrated System Design

R
el

at
iv

e
E

ffo
rt

Project Time

System

RTL

Logic

Transistor

by courtesy of A. Kuehlmann

17

General Design Approaches

Divide and conquer !
 partition design problem into many sub-problems which

are manageable
 define mathematical model for sub-problem and find an

algorithmic solution
beware of model limitations and check them !

 implement algorithm in individual design tools, define
and implement general interfaces among the tools

 implement checking tools for boundary conditions
 concatenate design tools to general design flows which

can be managed
 see what doesn’t work and start over

by courtesy of A. Kuehlmann 18

Full Custom Design Flow
 Application: ultra-high performance designs

 general-purpose processors, DSPs, graphic chips, internet
routers, game processors, etc.

 Target: very large markets with high profit margins
 e.g. PC business

 Complexity: very complex and labor intense
 involving large teams
 high up-front investments and relatively high risks

 Role of logic synthesis:
 limited to components that are not performance critical or that

might change late in design cycle (due to design bugs found
late)
 control logic
 non-critical data-path logic

 bulk of data-path components and fast control logic are
manually crafted for optimal performance

by courtesy of A. Kuehlmann

19

Full Custom Design Flow

ISA Specification

RTL Spec

Gate Level Netlist

Transistor Level Circuit

Layout

Circuit Simulation

Simulation

Design Rule Checker

Formal
Equivalence

Checking

Simulation

Logic Synthesis

Manual or
Semi-automatic

Design

Extract&Compare

by courtesy of A. Kuehlmann

(incomplete picture)

20

ASIC Design Flow
 Application: general IC market

 peripheral chips in PCs, toys, handheld devices, etc.
 Target: small to medium markets, tight design

schedules
 e.g. consumer electronics

 Complexity of design: standard design style,
quite predictable
 standard flows, standard off-the-shelf tools

 Role of logic synthesis:
 used on large fraction of design except for special blocks

such as RAM’s, ROM’s, analog components

by courtesy of A. Kuehlmann

21

ASIC Design Flow

Informal Specification

RTL Spec

Gate Level Netlist

Modified Gate Level Netlist Static Timing Analysis

Formal
Equivalence

Checking

Simulation

Logic Synthesis

Manual Changes
to fix timing ASIC Foundry

Test Logic Insertion

(incomplete picture)

What Is Logic Synthesis About?

Logic
Synthesis

Boolean Function
Expression

Optimized
Logic Netlist

Boolean/Temporal
Constraints

Solution Circuit

23

What Is Logic Synthesis About?

D

x y

Given: Finite-State Machine F(Q,X,Y,,) where:

Q: Set of states
X: Input alphabet
Y: Output alphabet
: X Q Q (next-state function)
: X Q Y (output function)

Target: Circuit C(G, W) where:

G: set of circuit components g {Boolean gates,
flip-flops, etc.}

W: set of wires connecting G

by courtesy of A. Kuehlmann 24

Why Is Logic Synthesis Useful?
 Core logic optimization technique in today's EDA

flows for IC and system design

 Broad applications in hardware model checking,
software verification, program synthesis, and
other areas besides circuit optimization
 Synthesis and verification are two sides of the same coin

 Good subject to get acquainted to Boolean
reasoning

25

Brief History
 1847: Boole’s “algebra of logic”
 1937: Shannon’s M.S. thesis, A Symbolic Analysis of Relay and Switching

Circuits
 1950s: Quine’s minimization theory of Boolean formulas
 1958: Kilby’s invention of IC
 1960s: ATPG D-Algorithm for Boolean reasoning
 1970s: two-level logic minimization for PLA,

 IBM introduced formal equivalence checking in computer design in 1978 and
logic synthesis for gate array based design in 1979

 1980s: multi-level logic minimization, FSM optimization, technology
mapping, BDD, symbolic equivalence checking
 Synopsys founded in 1986

 first product “remapper” between standard cell libraries
 1990s: sequential circuit optimization, don’t care computation, FPGA

synthesis, SAT, low-power synthesis, physical-aware logic synthesis,
hardware property checking
 More companies founded including Ambit, Compass, Synplicity. Magma,

Monterey, ...
 2000s: large-scale logic synthesis, synthesis for reliability, synthesis for

emerging technologies, statistical analysis and optimization

26

Course Outline
 Representation of Boolean functions and basic algorithms

 Boolean functions, formulas, circuits, SOP and POS representations, BDDs
 Efficient data structures and algorithms for Boolean reasoning

 Combinational circuit optimization
 Technology-independent two-level/multi-level logic optimization
 Technology mapping

 Timing analysis and optimization

 Sequential circuit optimization
 Clock skewing, retiming and resynthesis

 Formal verification
 Reachability analysis
 Formal equivalence checking
 Safety property checking

 Logic synthesis and verification tool
 ABC

(Detailed schedule is on the course webpage)

