Logic Synthesis and Verification

Jie-Hong Roland Jiang 江介宏

Department of Electrical Engineering National Taiwan University

Fall 2014

1

Boolean Algebra

Boolean Algebra

Reading

F. M. Brown. *Boolean Reasoning: The Logic of Boolean Equations*. Dover, 2003. (Chapters 1-3)

3

Boolean Algebra

- Outline
 - Definitions
 - Examples
 - Properties
 - Boolean formulae and Boolean functions

Boolean Algebra

- □ A Boolean algebra is an algebraic structure
 - $(B, +, \cdot, 0, 1)$
 - **B** is a set, called the *carrier*
 - + and · are binary operations defined on B
 - 0 and 1 are distinct members of B

that satisfies the following postulates (axioms):

- 1. Commutative laws
- 2. Distributive laws
- 3. Identities
- 4. Complements

5

Postulates of Boolean Algebra

 $(B, +, \cdot, 0, 1)$

- 1. **B** is closed under + and $\forall a, b \in \mathbf{B}, a + b \in \mathbf{B}$ and $a \cdot b \in \mathbf{B}$
- 2. Commutative laws: $\forall a,b \in \mathbf{B}$ a+b=b+a $a \cdot b = b \cdot a$
- 3. Distributive laws: $\forall a,b \in \mathbf{B}$ $a + (b \cdot c) = (a + b) \cdot (a + c)$ $a \cdot (b + c) = a \cdot b + a \cdot c$
- 4. Identities: $\forall a \in \mathbf{B}$ 0 + a = a $1 \cdot a = a$
- 5. Complements: $\forall a \in \mathbf{B}, \exists a' \in \mathbf{B} \text{ s.t.}$ $a + a' = \underline{1}$ $a \cdot a' = \underline{0}$ Verify that a' is unique in $(\mathbf{B}, +, \cdot, 0, 1)$.

Instances of Boolean Algebra

- ■Switching algebra (two-element Boolean algebra)
- ☐ The algebra of classes (subsets of a set)
- ■Arithmetic Boolean algebra
- ■The algebra of propositional functions

7

Instance 1: Switching Algebra

- A switching algebra is a two-element Boolean Algebra ($\{0,1\}$, +, ·, 0, 1) consisting of:
 - the set $\mathbf{B} = \{0, 1\}$
 - two binary operations AND(·) and OR(+)
 - one unary operation NOT(')

where

OR	0	1
0	0	1
1	1	1

AND	0	1
0	0	0
1	0	1

NOT	-
0	1
1	0

Switching Algebra

- Just one of many other Boolean algebras
 - (Ex: verify that the algebra satisfies all the postulates.)
- ☐ An exclusive property (not hold for all Boolean algebras) for two-element Boolean algebra:

$$x + y = 1$$
 iff $x=1$ or $y=1$
 $x \cdot y = 0$ iff $x=0$ or $y=0$

OR	0	1
0	0	1
1	1	1

AND	0	1
0	0	0
1	0	1

NOT	-
0	1
1	0

9

Instance 2: Algebra of Classes

Subsets of a set

$$\mathbf{B} \leftrightarrow 2^{S}$$

$$+ \leftrightarrow \cup$$

$$\cdot \leftrightarrow \cap$$

$$\underline{0} \leftrightarrow \phi$$

$$1 \leftrightarrow S$$

- \square S is a universal set $(S \neq \phi)$. Each subset of S is called a *class* of S.
- □ If $S = \{a,b\}$, then **B** = $\{\phi, \{a\}, \{b\}, \{a,b\}\}$
- \square **B** (= 2^S) is closed under \cup and \cap

Algebra of Classes

□ Commutative laws: $\forall S_1, S_2 \in 2^S$

$$S_1 \cup S_2 = S_2 \cup S_1$$

$$S_1 \cap S_2 = S_2 \cap S_1$$

■ Distributive laws: $\forall S_1, S_2, S_3 \in 2^S$

$$S_1 \cup (S_2 \cap S_3) = (S_1 \cup S_2) \cap (S_1 \cup S_3)$$

$$S_1 \cap (S_2 \cup S_3) = (S_1 \cap S_2) \cup (S_1 \cap S_3)$$

□ Identities: $\forall S_1 \in 2^S$

$$S_1 \cup \phi = S_1$$

$$S_1 \cap S = S_1$$

 \square Complements: $\forall S_1 \in 2^S, \exists S_1' \in 2^S, S_1' = S \setminus S_1 \text{ s.t.}$

$$S_1 \cup S_1' = S$$

$$S_1 \cap S_1' = \phi$$

11

Algebra of Classes

■ Stone Representation Theorem:

Every finite Boolean algebra is isomorphic to the Boolean algebra of subsets of some finite set S

Therefore, for all finite Boolean algebra, $|\mathbf{B}|$ can only be 2^k for some $k \ge 1$.

- □ The theorem proves that finite class algebras are not specialized (i.e. no exclusive properties, e.g. x + y = 1 iff x=1 or y=1 in two-element Boolean algebra)
 - Can reason in terms of specific and easily "visualizable" concepts (union, intersection, empty set, universal set) rather than abstract operations $(+, \cdot, 0, 1)$

Instance 3: Arithmetic Boolean Algebra

□ (D_n, lcm, gcd, 1, n)
 n: product of distinct prime numbers
 D_n: set of all divisors of n
 lcm: least common multiple
 gcd: greatest common divisor
 1: integer 1 (not the Boolean 1-element)

- \square $n = 30 = 2 \times 3 \times 5$
- \square $D_n = \{1, 2, 3, 5, 6, 10, 15, 30\}$
- □ If we look at D_n as $\{\phi, \{2\}, \{3\}, \{5\}, \{2, 3\}, \{2, 5\}, \{3, 5\}, \{2, 3, 5\}\}$, it is easy to see that arithmetic Boolean algebra is isomorphic to the algebra of classes.
 - See Stone Representation Theorem

13

Instance 4: Algebra of Propositional Functions

- □(P, ∨, ∧, □, ■)
 - P: the set of propositional functions of *n* given variables
 - v: disjunction symbol (OR)
 - ∧: conjunction symbol (AND)
 - : formula that is always false (contradiction)
 - ■: formula that is always true (tautology)

Lessons from Abstraction

- □ Abstract mathematical objects in terms of simple rules
- □ A systematic way of characterizing various seemingly unrelated mathematical objects
- Abstraction trims off immaterial details and simplifies problem formulation

15

Properties of Boolean Algebras

- □ For arbitrary elements a, b, and c in Boolean algebra
- 1. Associativity

$$a + (b + c) = (a + b) + c$$

 $a \cdot (b \cdot c) = (a \cdot b) \cdot c$

2. Idempotence

$$a + a = a$$

 $a \cdot a = a$

3.

$$a + 1 = 1$$

 $a \cdot 0 = 0$

4. Absorption

$$a + (a \cdot b) = a$$

 $a \cdot (a + b) = a$

5. Involution

$$(a')' = a$$

6. De Morgan's Laws

$$(a + b)' = a' \cdot b'$$

 $(a \cdot b)' = a' + b'$

7.

$$a + a' \cdot b = a + b$$

 $a \cdot (a' + b) = a \cdot b$

8. Consensus

$$a \cdot b + a' \cdot c + b \cdot c =$$

 $a \cdot b + a' \cdot c$
 $(a + b) \cdot (a' + c) \cdot (b + c) =$
 $(a + b) \cdot (a' + c)$

Principle of Duality

- ■Every identity on Boolean algebra is transformed into another identity if the following are interchanged
 - \blacksquare the operations + and \cdot ,
 - the elements 0 and 1
- ■Example:
 - a + 1 = 1
 - $\mathbf{a} \cdot \mathbf{0} = \mathbf{0}$

17

Postulates for Boolean Algebra (Revisited in View of Duality)

Duality in $(\mathbf{B}, +, \cdot, 0, 1)$

- 1. **B** is closed under + and $\forall a, b \in \mathbf{B}, a + b \in \mathbf{B}$ and $a \cdot b \in \mathbf{B}$
- 2. Commutative Laws: $\forall a, b \in \mathbf{B}$ a+b=b+a $a \cdot b = b \cdot a$
- 3. Distributive laws: $\forall a,b \in \mathbf{B}$ $a + (b \cdot c) = (a + b) \cdot (a + c)$ $a \cdot (b + c) = a \cdot b + a \cdot c$
- 4. Identities: $\forall a \in \mathbf{B}$ $\underline{0} + a = a$ $\underline{1} \cdot a = a$
- 5. Complements: $\forall a \in \mathbf{B}, \exists a' \in \mathbf{B} \text{ s.t.}$ $a + a' = \underline{1}$ $a \cdot a' = 0$

Two Propositions

1. Let a and b be members of a Boolean algebra. Then

$$a = \underline{0}$$
 and $b = \underline{0}$ iff $a + b = \underline{0}$
 $a = \underline{1}$ and $b = \underline{1}$ iff $ab = \underline{1}$

c.f. The following two propositions are only true for two-element Boolean algebra (not other Boolean algebra)

$$x+y = 1$$
 iff $x=1$ or $y=1$
 $xy=0$ iff $x=0$ or $y=0$

Why?

2. Let a and b be members of a Boolean algebra. Then a = b iff a'b + ab' = 0

19

Boolean Formulas and Boolean Functions

Boolean Formulas and Boolean Functions

■Outline:

- Definition of Boolean formulas
- Definition of Boolean functions
- Boole's expansion theorem
- The minterm canonical form

21

n-variable Boolean Formulas

- \square Given a Boolean algebra **B** and *n* symbols $x_1, ..., x_n$ the set of all Boolean formulas on the *n* symbols is defined by:
 - 1. The elements of **B** are Boolean formulas.
 - 2. The variable symbols $x_1, ..., x_n$ are Boolean formulas.
 - 3. If g and h are Boolean formulas, then so are
 - \square (g) + (h)
 - \square $(g) \cdot (h)$
 - \square (g)'
 - 4. A string is a Boolean formula if and only if it is obtained by finitely many applications of rules 1, 2, and 3.
- ☐ There are infinitely many *n*-variable Boolean formulas.

n-variable Boolean Functions

- □ A Boolean function is a mapping that can be described by a Boolean formula.
- ☐ Given an n-variable Boolean formula F, the corresponding n-variable function $f: \mathbf{B}^n \to \mathbf{B}$ is defined as follows:
 - 1. If $F = b \in \mathbf{B}$, then the formula represents the constant function defined by

$$f(x_1,...,x_n) = b \quad \forall ([x_1],...,[x_n]) \in \mathbf{B}^n$$

2. If $F = x_i$, then the formula represents the projection function defined by

$$f(X_1,\ldots,X_n) = X_i \quad \forall ([X_1],\ldots,[X_n]) \in \mathbf{B}^n$$

where $[x_k]$ denotes a valuation of variable x_k

23

n-variable Boolean Functions

3. If the formula is of type either G + H, GH, or G', then the corresponding *n*-variable function is defined as follows

$$(g + h)(x_1,...,x_n) = g(x_1,...,x_n) + h(x_1,...,x_n)$$

$$(g \cdot h)(x_1,...,x_n) = g(x_1,...,x_n) \cdot h(x_1,...,x_n)$$

$$(g')(x_1,...,x_n) = g(x_1,...,x_n)'$$
for $\forall ([x_1],...,[x_n]) \in \mathbf{B}^n$

☐ The number of *n*-variable Boolean functions over a finite Boolean algebra **B** is *finite*.

Example

- \Box **B** = { $\underline{0}$, $\underline{1}$, a, a'}
- □ Variable symbols: {x, y}
- 2-variable Boolean formula:

e.g.,
$$a' x + a y'$$

- □ 2-variable Boolean function: $f: \mathbf{B}^2 \to \mathbf{B}$
- □ Domain $\mathbf{B}^2 = \{ (0,0), (0,1), ..., (a,a) \}$

X 0 0 0 0 1 1 1 a a a a a' a'	у	f
<u>0</u>	<u>0</u>	a
<u>0</u>	1	a O a O O O O O O O O O O O O O O O O O
<u>O</u>	a'	а
0	а	<u>0</u>
1	<u>O</u>	<u>1</u>
<u>1</u>	<u>1</u>	a'
<u>1</u>	a'	<u>1</u>
<u>1</u>	а	a'
а	<u>0</u>	а
а	1	<u>0</u>
а	a'	а
а	а	<u>0</u>
a'	0	1
a'	y 0 1 a' a 0 1 a' a 0 1 a' a 0 1 a' a	a O a O 1 a' a' a' a'
a'	a'	1
a'	а	a'

25

Boole's Expansion Theorem

Theorem 1 If $f: \mathbf{B}^n \to \mathbf{B}$ is a Boolean function, then

$$f(x_1,...,x_n) = x'_1 f(\underline{0},...,x_n) + x_1 f(\underline{1},...,x_n)$$

for $\forall ([x_1],...,[x_n]) \in \mathbf{B}^n$

Proof. Case analysis of Boolean functions under the construction rules. Apply postulates of Boolean algebra.

☐ The theorem holds not only for twoelement Boolean algebra (c.f. Shannon expansion)

Minterm Canonical Form

Theorem 2 A function $f: \mathbf{B}^n \to \mathbf{B}$ is Boolean if and only if it can be expressed in the minterm canonical form

$$f(X) = \sum_{A \in \{\underline{0},\underline{1}\}^n} f(A) \cdot X^A$$

where $X = (x_1, ..., x_n) \in \mathbf{B}^n$, $A = (a_1, ..., a_n) \in \{\underline{0}, \underline{1}\}^n$, and $X^A \equiv x_1^{a_1} \cdot x_2^{a_2} \cdots x_n^{a_n}$ (with $x^0 \equiv x'$ and $x^1 \equiv x$)

Proof.

- (⇒) Follows from Boole's expansion theorem.
- (⇐) Examine the construction rules of Boolean functions.

27

Example

f is not Boolean!

Proof. If f is Boolean, f can be expressed by f(x) = x f(1) + x' f(0) = x + a x' from the minterm canonical form. However, substituting x = a in the previous expression yields: $f(a) = a + a a' = a \neq 1$

X	f(x)
0	а
1	1
a'	a'
а	1

Why Study General Boolean Algebra?

General algebras can't be avoided

$$f = x y + x z' + x' z$$

- Two-element view: $x, y, z \in \{0,1\}$ and $f \in \{0,1\}$
- General algebra view: f as a member of the Boolean algebra of 3-variable Boolean functions

29

Why Study General Boolean Algebra?

- ☐ General algebras are useful
 - Two-element view: Truth tables include only 0 and 1.
 - General algebra view: Truth tables contain any elements of B.

J	K	Q	Q+
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0

J	K	Q+
0	0	Q
0	1	0
1	0	1
1	1	Q'