
1

Logic Synthesis and
Verification

Jie-Hong Roland Jiang
江介宏

Department of Electrical Engineering
National Taiwan University

Fall 2014

2

SOPs and Incompletely
Specified Functions

Reading:
Logic Synthesis in a Nutshell

Section 2

most of the following slides are by
courtesy of Andreas Kuehlmann

3

Boolean Function Representation

Sum of Products
 A function can be represented by a sum of cubes (products):

 E.g., f = ab + ac + bc
Since each cube is a product of literals, this is a “sum of
products” (SOP) representation

 An SOP can be thought of as a set of cubes F
 E.g., F = {ab, ac, bc}

 A set of cubes that represents f is called a cover of f
 E.g.,

F1={ab, ac, bc} and F2={abc, abc’, ab’c, a’bc} are covers of
f = ab + ac + bc.

4

List of Cubes (Cover Matrix)

We often use a matrix notation to represent a
cover:
 Example

F = ac + c’d =

a b c d a b c d
a c 1 2 1 2 or 1 - 1 -
c’d 2 2 0 1 - - 0 1

Each row represents a cube
1 means that the positive literal appears in the cube
0 means that the negative literal appears in the cube
2 (or -) means that the variable does not appear in the

cube. It implicitly represents both 0 and 1 values.

5

PLA

 A PLA is a (multiple-output) function f : Bn Bm

represented in SOP form

f2 f3f1

n=3, m=3

a a b b c c
abc f1f2f3

10- 1 - -

-11 1 - -

0-0 - 1 -

111 - 1 1

00- - - 1

cover matrix

6

PLA

 Each distinct cube appears just once in the AND-
plane, and can be shared by (multiple) outputs in
the OR-plane, e.g., cube (abc)

 Extensions from single-output to multiple-output
minimization theory are straightforward

7

SOP
 The cover (set of SOPs) can efficiently represent many

practical logic functions (i.e., for many practical functions,
there exist small covers)

 Two-level minimization seeks the cover of minimum size
(least number of cubes)

bc ac

ab
c

a

b

= onset minterm

Note that each onset minterm is
“covered” by at least one of the
cubes!
None of the offset minterms is
covered

8

Irredundant Cube

 Let F = {c1, c2, …, ck} be a cover for f, i.e.,
f = i

k
=1 ci

A cube ci F is irredundant if F\{ci} f

 Example

f = ab + ac + bc

bc ac

ab
c

a

b

bc

ac
Not covered

F\{ab} f

9

Prime Cube
 A literal x (a variable or its negation) of cube c F (cover

of f) is prime if (F \ {c}) {cx} f,
where cx (cofactor w.r.t. x) is c with literal x of c deleted

 A cube of F is prime if all its literals are prime

 Example
f = xy + xz + yz
c = xy; cy = x (literal y deleted)
F \ {c} {cy} = x + xz + yz

yz

xz
x

z

x

yinequivalent to f since
offset vertex is covered

10

Prime and Irredundant Cover
 Definition 1. A cover is prime (resp. irredundant) if all its

cubes are prime (resp. irredundant)

 Definition 2. A prime (cube) of f is essential (essential
prime) if there is a onset minterm (essential vertex) in that
prime but not in any other prime

 Definition 3. Two cubes are orthogonal if they do not have
any minterm in common
 E.g. c1= xy c2 = y’z are orthogonal

c1= x’y c2 = yz are not orthogonal

11

Prime and Irredundant Cover
 Example

f = abc + b’d + c’d is prime and irredundant.
abc is essential since abcd’abc, but not in b’d or c’d or ad

Why is abcd not an essential vertex of abc?
What is an essential vertex of abc?
What other cube is essential? What prime is not essential?

abc

bd

cdda

c
b

12

Incompletely Specified Function

 Let F = (f, d, r) : Bn {0, 1, *}, where *
represents “don’t care”
 f = onset function f(x)=1 F(x)=1
 r = offset function r(x)=1 F(x)=0
 d = don’t care function d(x)=1 F(x)=*

 (f,d,r) forms a partition of Bn, i.e,
 f + d + r = Bn

 (f d) = (f r) = (d r) = (pairwise disjoint)
(Here we don’t distinguish characteristic functions and
the sets they represent)

13

Incompletely Specified Function

 A completely specified function g is a
cover for F = (f,d,r) if

f g f+d
 gr =
 if xd (i.e. d(x)=1), then g(x) can be 0 or 1;

if xf, then g(x) = 1; if xr, then g(x) = 0
 We “don’t care” which value g has at xd

14

Prime of Incompletely Specified
Function

 Definition. A cube c is a prime of F = (f,d,r) if c
f+d (an implicant of f+d), and no other implicant
(of f+d) contains c (i.e., it is simply a prime of
f+d)

 Definition. Cube cj of cover G = {ci} of F = (f,d,r)
is redundant if f G\{cj}; otherwise it is
irredundant

 Note that c f+d c r =

15

Prime of Incompletely Specified
Function

 Example
Consider logic minimization of F(a,b,c)=(f,d,r) with
f=a’bc’+ab’c+abc and d = abc’+ab’c’

F1={a’bc’, ab’c, abc}

ab’c is redundant
a is prime

F3= {a, a’bc’}
Expand a’bc’ bc’

Expand abca

F2={a, a’bc’, ab’c}

F4= {a, bc’}

off

on

don’t care

16

Checking of Prime and Irredundancy
Let G be a cover of F = (f,d,r), and D be a cover for d
 ci G is redundant iff

ci (G\{ci}) D (1)

(Let Gi G\{ci} D. Since ci Gi and f G f+d, then ci cif+cid and cif
 G\{ci}. Thus f G\{ci}.)

 A literal l ci is prime if (ci\{ l }) (= (ci)l) is not an implicant of F
 A cube ci is a prime of F iff all literals l ci are prime

Literal l ci is not prime (ci)l f+d (2)

Note: Both tests (1) and (2) can be checked by tautology (to be explained):

 (Gi)ci 1 (implies ci redundant)
 (fd)(ci)l

 1 (implies l not prime)
The above two cofactors are with respect to cubes instead of literals

17

(Literal) Cofactor
 Let f : Bn B be a Boolean function, and x= (x1, x2, …, xn)

the variables in the support of f; the cofactor fa of f by a
literal a = xi or a = xi is

 fxi
(x1, x2, …, xn) = f (x1, …, xi-1, 1, xi+1,…, xn)

 fxi
(x1, x2, …, xn) = f (x1, …, xi-1, 0, xi+1,…, xn)

The computation of the cofactor is a fundamental operation
in Boolean reasoning!

 Example

a

b

c

f = abc + abc

a

b

c

fa = bc

18

(Literal) Cofactor

 The cofactor Cxj of a cube C (representing some
Boolean function) with respect to a literal xj is
 C if xj and xj’ do not appear in C
 C\{xj} if xj appears positively in C, i.e., xj C
 if xj appears negatively in C, i.e., xj’ C

 Example
C = x1 x4’ x6,
Cx2 = C (x2 and x2’ do not appear in C)
Cx1 = x4’ x6 (x1 appears positively in C)
Cx4 = (x4 appears negatively in C)

19

(Literal) Cofactor

 Example

F = abc’ + b’d + cd
Fb = ac’ + cd

(Just drop b everywhere and throw away cubes
containing literal b’)

Cofactor and disjunction commute!

20

Shannon Expansion

Let f : Bn B
Shannon Expansion:

f = xi fxi
+ xi’ fxi’

Theorem: F is a cover of f. Then

F = xi Fxi + xi’ Fxi’

We say that f and F are expanded about xi, and
xi is called the splitting variable

21

Shannon Expansion
 Example

F = ab + ac + bc

F = a Fa + a’ Fa’

= a (b+c+bc)+a’ (bc)
= ab+ac+abc+a’bc

Cube bc got split into two cubes

c

a

b
c

a

b

bc

ac

ab

22

(Cube) Cofactor

 The cofactor fC of f by a cube C is f with the fixed
values indicated by the literals of C
 E.g., if C = xi xj’, then xi = 1 and xj = 0

 For C = x1 x4’ x6, fC is just the function f restricted to the
subspace where x1 = x6 = 1 and x4 = 0
Note that fC does not depend on x1,x4 or x6 anymore

(However, we still consider fC as a function of all n
variables, it just happens to be independent of x1,x4 and x6)

 x1f fx1
E.g., for f = ac + a’c, afa = af = ac and fa=c

23

(Cube) Cofactor

 The cofactor of the cover F of some function f is
the sum of the cofactors of each of the cubes of F

 If F={c1, c2,…, ck} is a cover of f, then Fc= {(c1)c,
(c2)c,…, (ck)c} is a cover of fc

24

Containment vs. Tautology
 A fundamental theorem that connects functional containment and

tautology:

Theorem. Let c be a cube and f a function. Then c f fc 1.

Proof.
We use the fact that xfx = xf, and fx is independent of x.
()
Suppose fc 1. Then cf = fcc = c. Thus, c f.
()
Suppose c f. Then f+c=f. In addition, fc = (f+c)c = fc+1=1. Thus,
fc=1.

ff
cc

25

Checking of Prime and Irredundancy
(Revisited)
Let G be a cover of F = (f,d,r). Let D be a cover for d
 ci G is redundant iff

ci (G\{ci}) D (1)

(Let Gi G\{ci} D. Since ci Gi and f G f+d, then ci cif+cid and cif
 G\{ci}. Thus f G\{ci}.)

 A literal l ci is prime if (ci\{ l }) (= (ci)l) is not an implicant of F
 A cube ci is a prime of F iff all literals l ci are prime

Literal l ci is not prime (ci)l f+d (2)

Note: Both tests (1) and (2) can be checked by tautology (explained):

 (Gi)ci 1 (implies ci redundant)
 (fd)(ci)l

 1 (implies l not prime)
The above two cofactors are with respect to cubes instead of literals

26

Generalized Cofactor

 Definition. Let f, g be completely specified
functions. The generalized cofactor of f with
respect to g is the incompletely specified function:

 Definition. Let = (f, d, r) and g be given. Then

co(f ,g) (f g,g, f g)

co(,g) (f g,d g,r g)

27

Shannon vs. Generalized Cofactor

 Let g = xi . Shannon cofactor is
fxi

(x1, x2, …, xn) = f (x1, …, xi-1, 1, xi+1,…, xn)

 Generalized cofactor with respect to g=xi is

 Note that

In fact fxi
is the unique cover of co(f, xi)

independent of the variable xi .

co(f , xi) (f xi , xi , f xi)

f xi fxi
 f xi xi f xi

28

Shannon vs. Generalized Cofactor

offoff

onon

DonDon’’t caret care

a

f abc abc abc abc

co(f ,a) (f a,a, f a) fa bc bc

offoff

onon

DonDon’’t caret care

a

f abc abc abc abc

co(f ,a) (f a,a, f a) fa bc bc

offoff

onon

DonDon’’t caret care

a

f abc abc abc abc

co(f ,a) (f a,a, f a) fa bc bc

29

Shannon vs. Generalized Cofactor

So

f

f a af
fa a

co(f ,a) (f a,a, f a)

f a f
a
 f aSo

f

f a af
fa a

co(f ,a) (f a,a, f a)

f a f
a
 f a

30

Shannon vs. Generalized Cofactor

Generalized Cofactor

We will get back to the use of generalized cofactor later

Shannon Cofactor

x fx x fx f

fx
y
 fxy

f g y
 fy gy

f
x
 fx

f g co(f ,g) g co(f ,g)

co(co(f , g),h) co(f ,gh)

co(f g,h) co(f ,h) co(g,h)

co(f ,g) co(f ,g)

31

Data Structure for SOP
Manipulation

most of the following slides are by
courtesy of Andreas Kuehlmann

32

Operation on Cube Lists
 AND operation:

 take two lists of cubes
 compute pair-wise AND between individual cubes and put result on

new list
 represent cubes in computer words
 implement set operations as bit-vector operations

Algorithm AND(List_of_Cubes C1,List_of_Cubes C2) {
C =
foreach c1 C1 {

foreach c2 C2 {
c = c1 c2
C = C c

}
}
return C

}

33

Operation on Cube Lists
 OR operation:

 take two lists of cubes
 computes union of both lists

 Naive implementation:

Algorithm OR(List_of_Cubes C1, List_of_Cubes C2) {
return C1 C2

}

 On-the-fly optimizations:
 remove cubes that are completely covered by other cubes

 complexity is O(m2); m is length of list
 conjoin adjacent cubes (consensus operation)
 remove redundant cubes?

 coNP-complete
 too expensive for non-orthogonal lists of cubes

34

Operation on Cube Lists

Simple trick:
 keep cubes in lists orthogonal

check for redundancy becomes O(m2)
but lists become significantly larger (worst case:

exponential)

 Example
01-0

01-0 0-1- 1-01
1-01 1-11 001-

0111
1-11

OR =

35

Operation on Cube Lists
 Adding cubes to orthogonal list:

Algorithm ADD_CUBE(List_of_Cubes C, Cube c) {
if(C =) return {c}
c’ = TOP(C)
Cres = c-c’ /* chopping off minterms may result in multiple cubes */
foreach cres Cres {
C = ADD_CUBE(C\{c’},cres) {c’}

}
return C

}

 How can the above procedure be further improved?
 What about the AND operation, does it gain from orthogonal cube lists?

36

Operation on Cube Lists
 Naive implementation of COMPLEMENT operation

 apply De’Morgan’s law to SOP
 complement each cube and use AND operation
Example

 Naive implementation of TAUTOLOGY check
 complement function using the COMPLEMENT operator and

check for emptiness
 We will show that we can do better than that!

Input non-orth. orthogonal

01-10 => 1---- => 1----

-0--- 00---

---0- 01-0-

----1 01-11

37

Tautology Checking
 Let A be an orthogonal cover matrix, and all cubes of A be

pair-wise distinguished by at least two literals (this can be
achieved by an on-the-fly merge of cube pairs that are
distinguished by only one literal)

Does the following conjecture hold?

A 1 A has a row of all “-”s ?

This would dramatically simplify the tautology check!

38

Tautology Checking
Algorithm CHECK_TAUTOLOGY(List_of_Cubes C) {
if(C ==) return FALSE;
if(C == {-...-})return TRUE; // cube with all ‘-’
xi = SELECT_VARIABLE(C)
C0 = COFACTOR(C,Xi)
if(CHECK_TAUTOLOGY(C0) == FALSE) {

print xi = 0
return FALSE;

}
C1 = COFACTOR(C,Xi)
if(CHECK_TAUTOLOGY(C1) == FALSE) {

print xi = 1
return FALSE;

}
return TRUE;

}

39

Tautology Checking

 Implementation tricks
 Variable ordering:

pick variable that minimizes the two sub-cases (“-”s
get replicated into both cases)

 Quick decision at leaf:
return TRUE if C contains at least one complete “-”

cube among others (case 1)
return FALSE if number of minterms in onset is < 2n

(case 2)
return FALSE if C contains same literal in every cube

(case 3)

40

Tautology Checking

Example

x1

x1

x2

x2

x3

x4

x4
x3

not tautology (case 3)

not tautology (case 3)

tautology (case 1)

tautology (case 1)

tautology (case 1)

-1-0

--10

1-11

0---

-1-0

--10

--11

-1-0

--10

---0

--10

--11

--10

--11

---0

---0

---1

41

Special Functions
 Definition. A function f : Bn B is symmetric with respect

to variables xi and xj iff
f(x1,…,xi,…,xj,…,xn) = f(x1,…,xj,…,xi,…,xn)

 Definition. A function f : Bn B is totally symmetric iff any
permutation of the variables in f does not change the
function

i j i jx x x xf f

Symmetry can be exploited in searching BDD since

- can skip one of four sub-cases

- used in automatic variable ordering for BDDs

42

Special Functions
 Definition. A function f : Bn B is positive unate in variable

xi iff

 This is equivalent to monotone increasing in xi:

for all min-term pairs (m-, m+) where

 Example
(1001, 1011) with i = 3

f

xi
 f

xi

f (m) f (m)

m
j
 m

j
 , j i

m
i
 0

m
i
 1

43

Special Functions
 Similarly for negative unate

monotone decreasing

 A function is unate in xi if it is positive unate or negative
unate in xi

 Definition. A function is unate if it is unate in each variable

 Definition. A cover F is positive unate in xi iff xi cj for all
cubes cjF

 Note that a cover of a unate function is not necessarily unate!
(However, there exists a unate cover for a unate function.)

f
xi
 f

xi

f (m) f (m)

44

Special Functions

 Example

c

b

a

m+

m-

f(m-)=1 f(m+)=0

positive unate in a,b
negative unate in c

f ab bc ac

45

Unate Recursive Paradigm

 Key pruning technique is based on exploiting the
properties of unate functions
 based on the fact that unate leaf cases can be

solved efficiently

 New case splitting heuristic
 splitting variable is chosen so that the

functions at lower nodes of the recursion tree
become unate

46

Unate Recursive Paradigm

 Unate covers F have many extraordinary properties:
 If a prime cover F is minimal with respect to single-

cube containment, all of its cubes are essential primes
In this case F is the unique minimum cube representation

of its logic function

 A unate cover represents a tautology iff it contains a
cube with no literals, i.e., a single tautologous cube

 This type of implicit enumeration applies to many sub-
problems (prime generation, reduction, complementation,
etc.). Hence, we refer to it as the Unate Recursive
Paradigm.

47

Unate Recursive Paradigm
1. Create cofactoring tree stopping at unate covers

 choose, at each node, the “most binate” variable for splitting
 iterate until no binate variable left (unate leaf)

2. “Operate” on the unate cover at each leaf to obtain the result for that leaf.
Return the result

3. At each non-leaf node, merge (appropriately) the results of the two
children.

 Main idea: “Operation” on unate leaf is computationally less complex
 Operations: complement, simplify, tautology, prime generation, ...

a

cb merge

48

Unate Recursive Paradigm

Binate select heuristic
 Tautology checking and other programs based

on the unate recursive paradigm use a
heuristic called BINATE_SELECT to choose the
splitting variable in recursive Shannon
expansion

The idea is, for a given cover F, choose the variable
which occurs, both positively and negatively, most
often in the cubes of F

49

Unate Recursive Paradigm
 Binate select heuristic

 Example
Unate and non-unate covers:

a b c d
G = ac+cd’ 1 - 1 -

- - 1 0

a b c d
F = ac+c’d+bcd’ 1 - 1 -

- - 0 1
- 1 1 0

 Choose c for splitting!

 Binate variables of a cover are those with both 1’s and 0’s in the
corresponding column

 In the unate recursive paradigm, the BINATE_SELECT heuristic
chooses a (most) binate variable for splitting, which is thus eliminated
from the sub-covers

is unate

is not unate

50

Unate Recursive Paradigm

Example

edbcdceacf

1

1

1

0

0

---1
unate

---1-
unate

-1-0-
unate

1---
-1-0
unate

1----
unate

1---0
-1-01

1 - 1 - 0
F= - - 0 1 -

- 1 1 0 1

1 - 1 -
F= - - 0 1

- 1 1 0

e

c

c

FC FC

0

dbcdcacf

51

Unate Recursive Paradigm
Unate Reduction

 Let F(x) be a cover. Let (a,c) be a partition of the variables x,
and let

where
1. the columns of A (a unate submatrix) correspond to

variables a of x
2. T is a matrix of all “-”s

 Theorem. Assume A 1. Then F1 F*1

 FT

CA
F

52

Unate Recursive Paradigm
Unate Reduction

Example

1 0 1

1 1 0

1 1

0

1

1 1

0

1

We pick for the partitioning unate variables because it is easy to decide that A1

 FT

CA
F

53

Unate Recursive Paradigm
Unate Reduction

 Example

 Assume A1 and A2 are unate and have no row of all “-”s.
 Note that A3 and A4 are unate (single-row sub-matrices)
 Consequently only have to look at D1 to test if this is a tautology

11

00

10

01

10AA11
AA44

DD11

BB22

AA33

BB11

AA22

54

Unate Recursive Paradigm
Unate Reduction

 Theorem:

Let A be a non-tautological unate matrix (A1)
and T is a matrix of all -’s. Then F 1 F* 1.

 Proof:
If part: Assume F* 1. Then we can replace F*
by all -’s. Then last row of F becomes a row of all
“-”s, so tautology.

 FT

CA
F

55

Unate Recursive Paradigm
Unate Reduction

 Proof (cont’d):
Only if part: Assume F* 1. Then there is a
minterm m2 (in c variables) such that F*m2

= 0
(cofactor in cube), i.e. m2 is not covered by F*.
Similarly, m1 (in a variables) exists where Am1

= 0,
i.e. m1 is not covered by A. Now the minterm
m1m2 (in the full variable set) satisfies Fm1m2

= 0.
Since m1m2 is not covered by F, F 1.

56

Unate Recursive Paradigm
Application – Tautology Checking
 Improved tautology check

Algorithm CHECK_TAUTOLOGY(List_of_Cubes C) {
if(C ==) return FALSE;
if(C == {-...-}) return TRUE; // cube with all ‘-’
C = UNATE_REDUCTION(C)
xi = BINATE_SELECT(C)
C0 = COFACTOR(C,xi)
if(CHECK_TAUTOLOGY(C0) == FALSE) {

return FALSE;
}
C1 = COFACTOR(C,xi)
if(CHECK_TAUTOLOGY(C1) == FALSE) {

return FALSE;
}
return TRUE;

}

57

Unate Recursive Paradigm
Application – Tautology Checking

 Example

x1

x1

x2

x2

x3

x4

x4x3

not tautology (case 3)

not tautology (case 3)

tautology (case 1)

tautology (case 1)

tautology (case 1)

-1-0

--10

1-11

0---

-1-0

--10

--11

-1-0

--10

---0

--10

--11

--10

--11

---0

---0

---1

Unate reduction

not tautology (case 2 and 3)

0---

58

Unate Recursive Paradigm
Application – Complement

 We have shown how tautology check (SAT check) can be
implemented recursively using the Binary Decision Tree

 Similarly, we can implement Boolean operations recursively,
e.g. the COMPLEMENT operation:

 Theorem.

 Proof.

x xf x f x f

0

1

x x

x x

g x f x f

f x f x f

f g
g f

f g

59

Unate Recursive Paradigm
Application – Complement

 Complement operation on cube list

Algorithm COMPLEMENT(List_of_Cubes C) {
if(C contains single cube c) {
Cres = complement_cube(c) // generate one cube per
return Cres // literal l in c with l

}
else {
xi = SELECT_VARIABLE(C)
C0 = COMPLEMENT(COFACTOR(C,xi)) xi
C1 = COMPLEMENT(COFACTOR(C,xi)) xi
return OR(C0,C1)

}
}

60

Unate Recursive Paradigm
Application – Complement

 Efficient complement of a unate cover
 Idea:

 variables appear only in one polarity on the original cover
(ab + bc + ac)’ = (a’+b’)(b’+c’)(a’+c’)

 when multiplied out, a number of products are redundant
a’b’a’ + a’b’c’ + a’c’a’ + a’c’c’+ b’b’a’ + b’b’c’ + b’c’a’ + b’c’c’ =
a’b’ + a’c’ + b’c’

 we just need to look at the combinations for which the
variables cover all original cubes (see the following example)
 this works independent of the polarity of the variables because of

symmetry to the (1,1,1,…,1) case (see the following example)

61

Unate Recursive Paradigm
Application – Complement

 Map (unate) cover matrix F into Boolean matrix B

F B

convert: “0”,”1” in F to “1” in B (literal is present)
“-” in F to “0” in B (literal is not present)

1 0

0 0 1

1 1 1

1 0 1

a b c d e

0 1 0 1 0

0 0 1 1 1

1 1 0 0 1

1 0 1 0 1

a b c d e

62

Unate Recursive Paradigm
Application – Complement

 Find all minimal column covers of B.
 A column cover is a set of columns J such that for each row i,

jJ such that Bij = 1

 Example
{1,4} is a minimal column cover for matrix B

All rows “covered” by at least one 1

10101

10011

11100

01010

1

1

1

1
1 2 3 4 5

63

Unate Recursive Paradigm
Application – Complement

 For each minimal column cover create a cube with opposite
column literal from F

 Example
By selecting a column cover {1,4}, a’d is a cube of f’

1 0

0 0 1

1 1 1

1 0 1

a b c d e

0 1 0 1 0

0 0 1 1 1

1 1 0 0 1

1 0 1 0 1

a b c d e

1 2 3 4 5 1 2 3 4 5

64

Unate Recursive Paradigm
Application – Complement

 The set of all minimal column covers = cover of f

 Example

 {(1,4), (2,3), (2,5), (4,5)} is the set of all minimal covers.
This translates into:

0 1 0 1 0

0 0 1 1 1

1 1 0 0 1

1 0 1 0 1

a b c d e

1 0

0 0 1

1 1 1

1 0 1

a b c d e

f ad bc be de

65

Unate Recursive Paradigm
Application – Complement

 Theorem (unate complement theorem):
Let F be a unate cover of f. The set of cubes associated with
the minimal column covers of B is a cube cover off.

 Proof:
We first show that any such cube c generated is in the
offset of f, by showing that the cube c is orthogonal with
any cube of F.
 Note, the literals of c are the complemented literals of F.

Since F is a unate cover, the literals of F are just the union
of the literals of each cube of F).

 For each cube miF, jJ such that Bij=1.
J is the column cover associated with c.

 Thus, (mi)j = xj cj =xj and (mi)j =xj cj = xj. Thus
mic = . Thus c f .

66

Unate Recursive Paradigm
Application – Complement

 Proof (cont’d):
We now show that any minterm m f is contained in some
cube c generated:
 First, m must be orthogonal to each cube of F.

For each row of F, there is at least one literal of m that
conflicts with that row.

 The union of all columns (literals) where this happens is a
column cover of B

 Hence this union contains at least one minimal cover and the
associated cube contains m.

67

Unate Recursive Paradigm
Application – Complement

 The unate covering problem finds a minimum
column cover for a given Boolean matrix B
 Unate complementation is one application based on the

unate covering problem

 Unate Covering Problem:
Given a matrix B, with Bij{0,1}, find x, with
xi{0,1}, such that Bx 1 (componentwise
inequality) and j xj is minimized

 Sometimes we want to minimize
j cjxj

where cj is a cost associated with column j

