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Boolean Function Representation

Sum of Products
 A function can be represented by a sum of cubes (products):

 E.g., f = ab + ac + bc
Since each cube is a product of literals, this is a “sum of 
products” (SOP) representation

 An SOP can be thought of as a set of cubes F
 E.g., F = {ab, ac, bc} 

 A set of cubes that represents f is called a cover of f
 E.g., 

F1={ab, ac, bc}  and F2={abc, abc’, ab’c, a’bc} are covers of        
f = ab + ac + bc. 
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List of Cubes (Cover Matrix)

We often use a matrix notation to represent a 
cover:
 Example

F = ac + c’d =

a b c d           a b c d
a c  1 2 1 2    or    1 - 1 -
c’d  2 2 0 1           - - 0 1

Each row represents a cube
1 means that the positive literal appears in the cube 
0 means that the negative literal appears in the cube
2 (or -) means that the variable does not appear in the 

cube. It implicitly represents both 0 and 1 values.
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PLA

 A PLA is a (multiple-output) function f : Bn  Bm

represented in SOP form

f2 f3f1

n=3, m=3

a a b b c c
abc f1f2f3

10- 1 - -

-11  1 - -

0-0  - 1 -

111  - 1 1

00- - - 1

cover matrix
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PLA

 Each distinct cube appears just once in the AND-
plane, and can be shared by (multiple) outputs in 
the OR-plane, e.g., cube (abc)

 Extensions from single-output to multiple-output 
minimization theory are straightforward
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SOP
 The cover (set of SOPs) can efficiently represent many 

practical logic functions (i.e., for many practical functions, 
there exist small covers)

 Two-level minimization seeks the cover of minimum size 
(least number of cubes)

bc ac

ab
c

a

b

= onset minterm

Note that each onset minterm is 
“covered” by at least one of the 
cubes!
None of the offset minterms is 
covered
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Irredundant Cube

 Let F = {c1, c2, …, ck} be a cover for f, i.e.,
f = i

k
=1 ci

A cube ci F is irredundant if F\{ci}  f

 Example

f = ab + ac + bc

bc ac

ab
c

a

b

bc

ac
Not covered

F\{ab}  f
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Prime Cube
 A literal x (a variable or its negation) of cube c  F  (cover 

of f) is prime if (F \ {c})  {cx}  f,
where cx (cofactor w.r.t. x) is c with literal x of c deleted

 A cube of F is prime if all its literals are prime

 Example 
f = xy + xz + yz
c = xy; cy = x (literal y deleted)
F \ {c}  {cy} = x + xz + yz

yz

xz
x

z

x

yinequivalent to f since
offset vertex is covered
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Prime and Irredundant Cover
 Definition 1. A cover is prime (resp. irredundant) if all its 

cubes are prime (resp. irredundant) 

 Definition 2. A prime (cube) of f is essential (essential 
prime) if there is a onset minterm (essential vertex) in that 
prime but not in any other prime

 Definition 3. Two cubes are orthogonal if they do not have 
any minterm in common
 E.g. c1= xy c2 = y’z are orthogonal

c1= x’y c2 = yz are not orthogonal
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Prime and Irredundant Cover
 Example

f = abc + b’d + c’d is prime and irredundant.
abc is essential since abcd’abc, but not in b’d or c’d or ad

Why is abcd not an essential vertex of abc?
What is an essential vertex of abc?
What other cube is essential? What prime is not essential?

abc

bd

cdda

c
b
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Incompletely Specified Function

 Let F = (f, d, r) : Bn  {0, 1, *}, where * 
represents “don’t care”
 f = onset function f(x)=1  F(x)=1 
 r = offset function r(x)=1  F(x)=0 
 d = don’t care function d(x)=1  F(x)=*

 (f,d,r) forms a partition of Bn, i.e,
 f + d + r = Bn

 (f  d) = (f  r) = (d  r) =  (pairwise disjoint)
(Here we don’t distinguish characteristic functions and 
the sets they represent)
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Incompletely Specified Function

 A completely specified function g is a 
cover for F = (f,d,r) if

f  g  f+d
 gr = 
 if xd (i.e. d(x)=1), then g(x) can be 0 or 1; 

if xf, then g(x) = 1; if xr, then g(x) = 0
 We “don’t care” which value g has at xd
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Prime of Incompletely Specified 
Function

 Definition. A cube c is a prime of F = (f,d,r) if c 
f+d (an implicant of f+d), and no other implicant
(of f+d) contains c (i.e., it is simply a prime of 
f+d)

 Definition. Cube cj of cover G = {ci} of F = (f,d,r) 
is redundant if f  G\{cj}; otherwise it is 
irredundant

 Note that c  f+d  c  r = 
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Prime of Incompletely Specified 
Function

 Example
Consider logic minimization of F(a,b,c)=(f,d,r) with 
f=a’bc’+ab’c+abc and d = abc’+ab’c’

F1={a’bc’, ab’c, abc}

ab’c is redundant
a is prime

F3= {a, a’bc’}
Expand a’bc’  bc’

Expand abca

F2={a, a’bc’, ab’c}

F4= {a, bc’}

off

on

don’t care
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Checking of Prime and Irredundancy
Let G be a cover of F = (f,d,r), and D be a cover for d
 ci  G is redundant iff

ci  (G\{ci})  D (1)

(Let Gi  G\{ci}  D. Since ci  Gi and f  G  f+d, then ci  cif+cid and cif
 G\{ci}. Thus f  G\{ci}.)

 A literal l  ci is prime if (ci\{ l }) ( = (ci)l ) is not an implicant of F
 A cube ci is a prime of F iff all literals l  ci are prime

Literal l  ci is not prime  (ci)l  f+d (2)

Note: Both tests (1) and (2) can be checked by tautology (to be explained):

 (Gi)ci  1          (implies ci redundant)
 (fd)(ci)l

 1      (implies l not prime)
The above two cofactors are with respect to cubes instead of literals
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(Literal) Cofactor
 Let f : Bn  B be a Boolean function, and x= (x1, x2, …, xn) 

the variables in the support of f; the cofactor fa of f by a 
literal a = xi or a = xi is

 fxi
(x1, x2, …, xn) = f (x1, …,  xi-1, 1, xi+1,…, xn)

 fxi
(x1, x2, …, xn) = f (x1, …,  xi-1, 0, xi+1,…, xn)

The computation of the cofactor is a fundamental operation 
in Boolean reasoning!

 Example

a

b

c

f = abc + abc

a

b

c

fa = bc
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(Literal) Cofactor

 The cofactor Cxj of a cube C (representing some 
Boolean function) with respect to a literal xj is
 C if xj and xj’ do not appear in C
 C\{xj} if xj appears positively in C, i.e., xj  C
  if xj appears negatively in C, i.e., xj’  C

 Example
C =  x1 x4’ x6,
Cx2 = C       (x2 and x2’ do not appear in C)
Cx1 = x4’ x6  (x1 appears positively in C)
Cx4 =   (x4 appears negatively in C)
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(Literal) Cofactor

 Example

F = abc’ + b’d + cd
Fb = ac’ + cd

(Just drop b everywhere and throw away cubes 
containing literal b’)

Cofactor and disjunction commute!
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Shannon Expansion

Let f : Bn  B
Shannon Expansion:

f = xi fxi
+ xi’ fxi’

Theorem: F is a cover of f. Then

F = xi Fxi + xi’ Fxi’

We say that f and F are expanded about xi, and
xi is called the splitting variable
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Shannon Expansion
 Example

F  = ab + ac + bc

F  = a Fa + a’ Fa’

= a (b+c+bc)+a’ (bc) 
= ab+ac+abc+a’bc

Cube bc got split into two cubes

c

a

b
c

a

b

bc

ac

ab
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(Cube) Cofactor

 The cofactor fC of f by a cube C is f with the fixed 
values indicated by the literals of C
 E.g., if C = xi xj’, then xi = 1 and xj = 0

 For C = x1 x4’ x6, fC is just the function f restricted to the 
subspace where x1 = x6 = 1 and x4 = 0
Note that fC does not depend on x1,x4 or x6 anymore

(However, we still consider fC as a function of all n
variables, it just happens to be independent of x1,x4 and x6)

 x1f  fx1
E.g., for f = ac + a’c, afa = af = ac and  fa=c
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(Cube) Cofactor

 The cofactor of the cover F of some function f is 
the sum of the cofactors of each of the cubes of F

 If F={c1, c2,…, ck} is a cover of f, then Fc= {(c1)c, 
(c2)c,…, (ck)c} is a cover of fc

24

Containment vs. Tautology
 A fundamental theorem that connects functional containment and 

tautology:

Theorem. Let c be a cube and f a function. Then c  f  fc  1.

Proof.
We use the fact that xfx = xf, and fx is independent of x.
()
Suppose fc  1. Then cf = fcc = c. Thus, c  f.
()
Suppose c  f. Then f+c=f. In addition, fc = (f+c)c = fc+1=1. Thus, 
fc=1.

ff
cc
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Checking of Prime and Irredundancy
(Revisited)
Let G be a cover of F = (f,d,r). Let D be a cover for d
 ci  G is redundant iff

ci  (G\{ci})  D (1)

(Let Gi  G\{ci}  D. Since ci  Gi and f  G  f+d, then ci  cif+cid and cif
 G\{ci}. Thus f  G\{ci}.)

 A literal l  ci is prime if (ci\{ l }) ( = (ci)l ) is not an implicant of F
 A cube ci is a prime of F iff all literals l  ci are prime

Literal l  ci is not prime  (ci)l  f+d (2)

Note: Both tests (1) and (2) can be checked by tautology (explained):

 (Gi)ci  1          (implies ci redundant)
 (fd)(ci)l

 1      (implies l not prime)
The above two cofactors are with respect to cubes instead of literals
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Generalized Cofactor

 Definition. Let f, g be completely specified 
functions. The generalized cofactor of f with 
respect to g is the incompletely specified function:

 Definition. Let  = (f, d, r) and g be given. Then

co( f ,g)  ( f  g,g, f  g)

co(,g)  ( f  g,d  g,r  g)
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Shannon vs. Generalized Cofactor

 Let g = xi . Shannon cofactor is
fxi

(x1, x2, …, xn) = f (x1, …,  xi-1, 1, xi+1,…, xn)

 Generalized cofactor with respect to g=xi is

 Note that

In fact fxi
is the unique cover of co(f, xi )

independent of the variable xi .

co( f , xi )  ( f  xi , xi , f  xi )

f  xi  fxi
 f  xi  xi  f  xi
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Shannon vs. Generalized Cofactor

offoff

onon

DonDon’’t caret care

a

f  abc  abc  abc  abc

co( f ,a)  ( f a,a, f a) fa  bc  bc

offoff

onon

DonDon’’t caret care

a

f  abc  abc  abc  abc

co( f ,a)  ( f a,a, f a) fa  bc  bc

offoff

onon

DonDon’’t caret care

a

f  abc  abc  abc  abc

co( f ,a)  ( f a,a, f a) fa  bc  bc
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Shannon vs. Generalized Cofactor

So

f

f a af
fa a

co( f ,a)  ( f a,a, f a)

 

f  a  f
a
 f  aSo

f

f a af
fa a

co( f ,a)  ( f a,a, f a)

 

f  a  f
a
 f  a
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Shannon vs. Generalized Cofactor

Generalized Cofactor

We will get back to the use of generalized cofactor later

Shannon Cofactor

x  fx  x  fx  f

fx 
y
 fxy

f  g y
 fy  gy

f 
x
 fx 

f  g  co( f ,g)  g  co( f ,g)

co(co( f , g),h)  co( f ,gh)

co( f  g,h)  co( f ,h)  co(g,h)

co( f ,g)  co( f ,g)
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Data Structure for SOP 
Manipulation

most of the following slides are by 
courtesy of Andreas Kuehlmann
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Operation on Cube Lists
 AND operation:

 take two lists of cubes
 compute pair-wise AND between individual cubes and put result on 

new list
 represent cubes in computer words
 implement set operations as bit-vector operations

Algorithm AND(List_of_Cubes C1,List_of_Cubes C2) {
C = 
foreach c1  C1 {

foreach c2  C2 {
c = c1  c2
C = C  c

}
}
return C

}
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Operation on Cube Lists
 OR operation:

 take two lists of cubes
 computes union of both lists

 Naive implementation:

Algorithm OR(List_of_Cubes C1, List_of_Cubes C2) {
return C1  C2

}

 On-the-fly optimizations:
 remove cubes that are completely covered by other cubes

 complexity is O(m2); m is length of list
 conjoin adjacent cubes (consensus operation)
 remove redundant cubes? 

 coNP-complete
 too expensive for non-orthogonal lists of cubes
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Operation on Cube Lists

Simple trick: 
 keep cubes in lists orthogonal

check for redundancy becomes O(m2)
but lists become significantly larger (worst case: 

exponential)

 Example
01-0

01-0 0-1- 1-01
1-01 1-11 001-

0111
1-11

OR                 =
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Operation on Cube Lists
 Adding cubes to orthogonal list:

Algorithm ADD_CUBE(List_of_Cubes C, Cube c) {
if(C = ) return {c}
c’ = TOP(C)
Cres = c-c’ /* chopping off minterms may result in multiple cubes */
foreach cres  Cres {
C = ADD_CUBE(C\{c’},cres)  {c’}

}
return C

}

 How can the above procedure be further improved?
 What about the AND operation, does it gain from orthogonal cube lists?
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Operation on Cube Lists
 Naive implementation of COMPLEMENT operation

 apply De’Morgan’s law to SOP 
 complement each cube and use AND operation
Example

 Naive implementation of TAUTOLOGY check
 complement function using the COMPLEMENT operator and 

check for emptiness
 We will show that we can do better than that!

Input                   non-orth.              orthogonal

01-10 =>  1---- => 1----

-0--- 00---

---0- 01-0-

----1      01-11
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Tautology Checking
 Let A be an orthogonal cover matrix, and all cubes of A be 

pair-wise distinguished by at least two literals (this can be 
achieved by an on-the-fly merge of cube pairs that are 
distinguished by only one literal)

Does the following conjecture hold?

A  1    A has a row of all “-”s   ?

This would dramatically simplify the tautology check!
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Tautology Checking
Algorithm CHECK_TAUTOLOGY(List_of_Cubes C) {
if(C == )      return FALSE;
if(C == {-...-})return TRUE; // cube with all ‘-’
xi = SELECT_VARIABLE(C)
C0 = COFACTOR(C,Xi)
if(CHECK_TAUTOLOGY(C0) == FALSE) {

print xi = 0
return FALSE;

}
C1 = COFACTOR(C,Xi)
if(CHECK_TAUTOLOGY(C1) == FALSE) {

print xi = 1
return FALSE;

}
return TRUE;

}
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Tautology Checking

 Implementation tricks
 Variable ordering:

pick variable that minimizes the two sub-cases (“-”s 
get replicated into both cases)

 Quick decision at leaf:
return TRUE if C contains at least one complete “-”

cube among others (case 1)
return FALSE if number of minterms in onset is < 2n  

(case 2)
return FALSE if C contains same literal in every cube 

(case 3)
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Tautology Checking

Example

x1

x1

x2

x2

x3

x4

x4
x3

not tautology (case 3)

not tautology (case 3)

tautology (case 1)

tautology (case 1)

tautology (case 1)

-1-0

--10

1-11

0---

-1-0

--10

--11

-1-0

--10

----

---0

--10

--11

--10

--11

---0

---0

---1

----

----
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Special Functions
 Definition. A function f : Bn  B is symmetric with respect 

to variables xi and xj iff
f(x1,…,xi,…,xj,…,xn) = f(x1,…,xj,…,xi,…,xn)

 Definition. A function f : Bn  B is totally symmetric iff any 
permutation of the variables in f does not change the 
function

i j i jx x x xf f

Symmetry can be exploited in searching BDD since

- can skip one of four sub-cases

- used in automatic variable ordering for BDDs
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Special Functions
 Definition. A function f : Bn  B is positive unate in variable 

xi iff

 This is equivalent to monotone increasing in xi:

for all min-term pairs (m-, m+) where

 Example
(1001, 1011) with i = 3

 
f

xi
 f

xi

f (m )  f (m )

  

m
j
  m

j
 , j  i

m
i
  0

m
i
  1
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Special Functions
 Similarly for negative unate

monotone decreasing

 A function is unate in xi if it is positive unate or negative 
unate in xi

 Definition. A function is unate if it is unate in each variable 

 Definition. A cover F is positive unate in xi iff xi  cj for all 
cubes cjF

 Note that a cover of a unate function is not necessarily unate! 
(However, there exists a unate cover for a unate function.)

f
xi
 f

xi

f (m )  f (m )
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Special Functions

 Example

c

b

a

m+

m-

f(m-)=1  f(m+)=0

positive unate in a,b
negative unate in c

f ab bc ac  
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Unate Recursive Paradigm

 Key pruning technique is based on exploiting the 
properties of unate functions
 based on the fact that unate leaf cases can be 

solved efficiently

 New case splitting heuristic
 splitting variable is chosen so that the 

functions at lower nodes of the recursion tree 
become unate
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Unate Recursive Paradigm

 Unate covers F have many extraordinary properties:
 If a prime cover F is minimal with respect to single-

cube containment, all of its cubes are essential primes
In this case F is the unique minimum cube representation 

of its logic function

 A unate cover represents a tautology iff it contains a 
cube with no literals, i.e., a single tautologous cube

 This type of implicit enumeration applies to many sub-
problems (prime generation, reduction, complementation, 
etc.). Hence, we refer to it as the Unate Recursive 
Paradigm.
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Unate Recursive Paradigm
1. Create cofactoring tree stopping at unate covers

 choose, at each node, the “most binate” variable for splitting
 iterate until no binate variable left (unate leaf)

2. “Operate” on the unate cover at each leaf to obtain the result for that leaf. 
Return the result

3. At each non-leaf node, merge (appropriately) the results of the two 
children.

 Main idea: “Operation” on unate leaf is computationally less complex
 Operations: complement, simplify, tautology, prime generation, ...

a

cb merge
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Unate Recursive Paradigm

Binate select heuristic
 Tautology checking and other programs based 

on the unate recursive paradigm use a 
heuristic called BINATE_SELECT to choose the 
splitting variable in recursive Shannon 
expansion

The idea is, for a given cover F, choose the variable 
which occurs, both positively and negatively, most 
often in the cubes of F
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Unate Recursive Paradigm
 Binate select heuristic

 Example
Unate and non-unate covers:

a b c d
G = ac+cd’ 1 - 1 -

- - 1 0

a b c d
F = ac+c’d+bcd’ 1 - 1 -

- - 0 1
- 1 1 0

 Choose c for splitting!

 Binate variables of a cover are those with both 1’s and 0’s in the 
corresponding column

 In the unate recursive paradigm, the BINATE_SELECT heuristic 
chooses a (most) binate variable for splitting, which is thus eliminated 
from the sub-covers

is unate

is not unate
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Unate Recursive Paradigm

Example

edbcdceacf 

1

1

1

0

0

---1
unate

---1-
unate

-1-0-
unate

1---
-1-0
unate

1----
unate

1---0
-1-01

1 - 1 - 0
F= - - 0 1 -

- 1 1 0 1

1 - 1 -
F= - - 0 1

- 1 1 0

e

c

c

FC FC

0

dbcdcacf 
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Unate Recursive Paradigm
Unate Reduction

 Let F(x) be a cover. Let (a,c) be a partition of the variables x, 
and let

where
1. the columns of A (a unate submatrix) correspond to 

variables a of x
2. T is a matrix of all “-”s

 Theorem. Assume A 1. Then F1  F*1









 FT

CA
F
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Unate Recursive Paradigm
Unate Reduction

Example

1 0 1

1 1 0

1 1

0

1



 
  
  

1 1

0

1




We pick for the partitioning unate variables because it is easy to decide that A1









 FT

CA
F
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Unate Recursive Paradigm
Unate Reduction

 Example

 Assume A1 and A2 are unate and have no row of all “-”s. 
 Note that A3 and A4 are unate (single-row sub-matrices)
 Consequently only have to look at D1 to test if this is a tautology

11

00

10

    
    

01

10AA11
AA44

DD11

BB22

AA33

BB11

AA22
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Unate Recursive Paradigm
Unate Reduction

 Theorem:

Let A be a non-tautological unate matrix  (A1) 
and T is a matrix of all -’s. Then F  1  F*  1.

 Proof:
If part: Assume F*  1. Then we can replace F* 
by all -’s. Then last row of F becomes a row of all 
“-”s, so tautology.









 FT

CA
F
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Unate Recursive Paradigm
Unate Reduction

 Proof (cont’d):
Only if part: Assume F* 1. Then there is a 
minterm m2 (in c variables) such that F*m2 

= 0 
(cofactor in cube), i.e. m2 is not covered by F*. 
Similarly, m1 (in a variables) exists where Am1

= 0, 
i.e. m1 is not covered by A. Now the minterm
m1m2 (in the full variable set) satisfies Fm1m2

= 0. 
Since m1m2 is not covered by F, F 1.
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Unate Recursive Paradigm
Application – Tautology Checking
 Improved tautology check

Algorithm CHECK_TAUTOLOGY(List_of_Cubes C) {
if(C == )      return FALSE;
if(C == {-...-}) return TRUE; // cube with all ‘-’
C = UNATE_REDUCTION(C)
xi = BINATE_SELECT(C)
C0 = COFACTOR(C,xi)
if(CHECK_TAUTOLOGY(C0) == FALSE) {

return FALSE;
}
C1 = COFACTOR(C,xi)
if(CHECK_TAUTOLOGY(C1) == FALSE) {

return FALSE;
}
return TRUE;

}
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Unate Recursive Paradigm
Application – Tautology Checking

 Example

x1

x1

x2

x2

x3

x4

x4x3

not tautology (case 3)

not tautology (case 3)

tautology (case 1)

tautology (case 1)

tautology (case 1)

-1-0

--10

1-11

0---

-1-0

--10

--11

-1-0

--10

----

---0

--10

--11

--10

--11

---0

---0

---1

----

----

Unate reduction

not tautology (case 2 and 3)

0---
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Unate Recursive Paradigm
Application – Complement

 We have shown how tautology check (SAT check) can be 
implemented recursively using the Binary Decision Tree

 Similarly, we can implement Boolean operations recursively,
e.g. the COMPLEMENT operation:

 Theorem.

 Proof.

x xf x f x f   

0

1

x x

x x

g x f x f

f x f x f

f g
g f

f g
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Unate Recursive Paradigm
Application – Complement

 Complement operation on cube list

Algorithm COMPLEMENT(List_of_Cubes C) {
if(C contains single cube c) {
Cres = complement_cube(c)  // generate one cube per 
return Cres // literal l in c with l

}
else {
xi = SELECT_VARIABLE(C)
C0 = COMPLEMENT(COFACTOR(C,xi))  xi
C1 = COMPLEMENT(COFACTOR(C,xi))   xi
return OR(C0,C1)

}
}
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Unate Recursive Paradigm
Application – Complement

 Efficient complement of a unate cover
 Idea:

 variables appear only in one polarity on the original cover
(ab + bc + ac)’ = (a’+b’)(b’+c’)(a’+c’)

 when multiplied out, a number of products are redundant
a’b’a’ + a’b’c’ + a’c’a’ + a’c’c’+ b’b’a’ + b’b’c’ + b’c’a’ + b’c’c’ =
a’b’ + a’c’ + b’c’

 we just need to look at the combinations for which the 
variables cover all original cubes (see the following example)
 this works independent of the polarity of the variables because of 

symmetry to the (1,1,1,…,1) case (see the following example)



61

Unate Recursive Paradigm
Application – Complement

 Map (unate) cover matrix F into Boolean matrix B

F                                       B

convert:  “0”,”1” in F to “1” in B  (literal is present)
“-” in F to “0” in B      (literal is not present)

1 0

0 0 1

1 1 1

1 0 1

a b c d e

  
 

 
 

0 1 0 1 0

0 0 1 1 1

1 1 0 0 1

1 0 1 0 1

a b c d e
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Unate Recursive Paradigm
Application – Complement

 Find all minimal column covers of B. 
 A column cover is a set of columns J such that for each row i, 

jJ such that Bij = 1

 Example
{1,4} is a minimal column cover for matrix B

All rows “covered” by at least one 1

10101

10011

11100

01010

1

1

1

1
1    2    3   4    5
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Unate Recursive Paradigm
Application – Complement

 For each minimal column cover create a cube with opposite 
column literal from F

 Example
By selecting a column cover {1,4}, a’d is a cube of f’

1 0

0 0 1

1 1 1

1 0 1

a b c d e

  
 

 
 

0 1 0 1 0

0 0 1 1 1

1 1 0 0 1

1 0 1 0 1

a b c d e

1    2   3     4    5 1    2   3    4    5
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Unate Recursive Paradigm
Application – Complement

 The set of all minimal column covers = cover of f

 Example

 {(1,4), (2,3), (2,5), (4,5)} is the set of all minimal covers. 
This translates into:

0 1 0 1 0

0 0 1 1 1

1 1 0 0 1

1 0 1 0 1

a b c d e

1 0

0 0 1

1 1 1

1 0 1

a b c d e

  
 

 
 

f ad bc be de   
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Unate Recursive Paradigm
Application – Complement

 Theorem (unate complement theorem):
Let F be a unate cover of f. The set of cubes associated with 
the minimal column covers of B is a cube cover off.

 Proof:
We first show that any such cube c generated is in the 
offset of f, by showing that the cube c is orthogonal with 
any cube of F. 
 Note, the literals of c are the complemented literals of F. 

Since F is a unate cover, the literals of F are just the union 
of the literals of each cube of F). 

 For each cube miF, jJ such that Bij=1. 
J is the column cover associated with c. 

 Thus, (mi)j = xj  cj =xj and (mi)j =xj  cj = xj. Thus 
mic = . Thus c  f .
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Unate Recursive Paradigm
Application – Complement

 Proof (cont’d):
We now show that any minterm m f is contained in some 
cube c generated:
 First, m must be orthogonal to each cube of F. 

For each row of F, there is at least one literal of m that 
conflicts with that row. 

 The union of all columns (literals) where this happens is a 
column cover of B

 Hence this union contains at least one minimal cover and the 
associated cube contains m.
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Unate Recursive Paradigm
Application – Complement

 The unate covering problem finds a minimum 
column cover for a given Boolean matrix B
 Unate complementation is one application based on the 

unate covering problem

 Unate Covering Problem:
Given a matrix B, with Bij{0,1}, find x, with 
xi{0,1}, such that Bx  1 (componentwise
inequality) and j xj is minimized

 Sometimes we want to minimize
j cjxj

where cj is a cost associated with column j


